Skip to main content

Molecular Genetics of NIDDM and the Genes for Insulin and Insulin Receptor

  • Chapter
New Concepts in the Pathogenesis of NIDDM

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 334))

  • 103 Accesses

Abstract

It is generally accepted that non-insulin dependent diabetes mellitus (NIDDM) is an inherited disease. This is illustrated, e. g., by the high concordance rate of NIDDM among monozygotic twins (90–95%) and the somewhat lower concordance in dizygotic twins (approx. 40%).1–3 NIDDM also displays obvious familial aggregation. First degree relatives of NIDDM patients run a 40% lifetime risk of developing the disease, compared to a 10% risk in individuals without diagnosed NIDDM in first degree relatives.4 Furthermore, the ethnic variability of the frequency of the disease, ranging from over 50% in Pima Indians and Naruans to 2–3% in the North European population, has been taken to illustrate that genetic factors are of major importance in determining the risk to develop NIDDM in response to environmental influence.1–3 These and a number of other findings were derived from studies of populations with NIDDM, and in a few instances subjects with decreased glucose tolerance. As long as we lack an exact description regarding the genetics of common NIDDM, we must presume that the susceptibility to NIDDM is inherited in a polygenic fashion with the effect of some major genes, interactions between genes and environment, and environmental effects alone. Furthermore, the disease is probably heterogeneous, such that different combinations of susceptibility alleles can lead to overt disease in a permissive milieu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pyke DA, Nelson PG, Diabetes mellilus in identical twins, in: “The Genetics of Diabetes Mellitus,” Cruetzfeldt W, Köbberling J, Neel JV, ed., Springer-Verlag, Berlin (1976).

    Google Scholar 

  2. Barnett AH, Eff C, Leslie RDG, Pyke DA, Diabetes in identical twins, Diabetologia. 20:87–93 (1981).

    Article  PubMed  CAS  Google Scholar 

  3. Barnett AH, Eff C, Leslie RDG, Pyke DA, Diabetes in identical twins: a study of 200 Pairs, Diabetologia. 17:333–343 (1979).

    Article  Google Scholar 

  4. Köbberling J, Tillil H, Empirical risk figures for first degree relatives of non-insulin dependent diabetics, in: “The Genetics of Diabetes Mellitus,” Köbberling J, Tattersall R, ed., Academic Press, London (1982).

    Google Scholar 

  5. Zimmet P, Type 2 (non-insulin-dependent) diabetes — an epidemiological overview, Diabetologia. 22:399–411 (1982).

    Article  PubMed  CAS  Google Scholar 

  6. Zimmet P, King H, Taylor R, The high prevalence of diabetes mellitus, impaired glucose tolerance and diabetic retinopaty in Naru-the 1982 survey, Diabetes Research. 1:13–18 (1984).

    PubMed  CAS  Google Scholar 

  7. Bennett PH, Epidemiology of diabetes mellitus, in: “Diabetes Mellitus: Theory and Practice,” Rifkin H, Porte DJ, ed., Elsivier Science Publishing Co., Inc., New York (1990).

    Google Scholar 

  8. Cerasi E, Luft R, “What is inheritcd-what is added”, hypothesis for the pathogenesis of diabetes mellitus, Diabetes. 16:615–627 (1967).

    PubMed  CAS  Google Scholar 

  9. Iselius L, Lindsten J, Morton NE, Efcndic S, Cerasi E, Haegermark A, Luft R, Genetic regulation of the kinetics of glucose-induced insulin release in man, Clin Genetics. 28:8–15 (1985).

    Article  CAS  Google Scholar 

  10. Luft R, Cerasi E, Hamberger CA, Studies on the pathogenesis of diabetes in acromegaly, Acta Endocinol (Copenh). 56:593–607 (1967).

    CAS  Google Scholar 

  11. Luft R, Cerasi E, Andersson B, Obesity as an additional factor in the pathogenesis of diabetes, Acta Endocinol (Copenh). 59:344–352 (1968).

    CAS  Google Scholar 

  12. Fajans SS, Scope and heterogeneous nature of MODY, Diab Care. 13:49–64 (1990).

    Article  CAS  Google Scholar 

  13. Bell GI, Xiang K, Newman MV, Wu S, Wright LG, Fajans SS, Spielman RS, Cox NJ, Gene for non-insulin-dcpendent diabetes mellitus (maturity-onset diabetes of the young subtype) is linked to DNA polymorphism on human chromosome 20q, Proc Nail Acad Sci USA. 88:1484–1488 (1991).

    Article  CAS  Google Scholar 

  14. Shafrir E, Renold AE, ed. “Frontiers in Diabetes Research. Lessons from Animal Diabetes. II,” J Libbey, London (1988).

    Google Scholar 

  15. Shafrir E, Diabetes in animals, in: “Diabetes Mellitus. Theory and Practice,” Rifkin H, Porte D, ed., Elsevier, New York (1990).

    Google Scholar 

  16. Lander ES, Botstein D, Mapping medelian factors underlying qantitative traits using RFLP linkage maps, Genetics. 121:185–199 (1989).

    PubMed  CAS  Google Scholar 

  17. Hilbert P, Lindpaintner K, Beckmann JS, Serikawa T, Soubrier F, Dubay C, Cartwright P, DeGouyon B, Julier C, Takahasi S, Vincent M, Ganten D, Georges M, Lathrop GM, Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats, Nature. 353:521–529 (1991).

    Article  PubMed  CAS  Google Scholar 

  18. Jacob HJ, Pettersson A, Wilson D, Mao Y, Lernmark Å, Lander ES, Genetic dissection of autoimmune type 1 diabetes in the BB rat Nature Genetics. 2:56–60 (1992).

    Article  PubMed  CAS  Google Scholar 

  19. Haneda M, Polonsky KS, Bergenstal RM, al e, Familial hyperinsulinemia due to a structurally abnormal insulin. Definition of an emerging new clinical syndrome, N Engl J Med. 310:1288–1294 (1984).

    Article  PubMed  CAS  Google Scholar 

  20. Steiner DF, Tager HS, Chan SJ, Nanjo K, Sanke T, Rubenstein AH, Lessons learned from molecular biology of insulin-gene mutations, Diab Care. 13:600–609 (1990).

    Article  CAS  Google Scholar 

  21. Bell GI, Selby MJ, Rutter WJ, The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences., Nature. 295:31–35 (1982).

    Article  PubMed  CAS  Google Scholar 

  22. Walker MD, Edlund T, Boulet AM, Rutter WJ, Cell-specific expression controlled by the 5-flanking region of insulin and chymotrypsin genes, Nature. 306:557–561 (1983).

    Article  PubMed  CAS  Google Scholar 

  23. Bell GI, Horita S, Karam JH, A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus, Diabetes. 33:176–183 (1984).

    Article  PubMed  CAS  Google Scholar 

  24. Cocozza S, Riccardi G, Monticelli A, Capaldo B, Genovese S, Krogh V, Celentano E, Farinaro E, Varrone S, Avvedimento VE, Polymorphism at the 5′ end Hanking region of the insulin gene is associated with reduced insulin secretion in healthy individuals., Eur J Clin Invest. 18:582–586 (1988).

    Article  PubMed  CAS  Google Scholar 

  25. Luthman H, Wedell A, Norgrcn S, Hamsten A, Luft R, Efendic S, Lindsten J, Human insulin gene 5′VNTR polymorphism: association to blood glucose and insulin response during glucose loadings in non-diabetic subjects., Manuscript.

    Google Scholar 

  26. Morgan R, Bishop A, Owens DR, Luzio SD, Peters JR, Rees A, Allelic variants at the insulin-receptor and insulin gene loci and susceptibility to NIDDM in Welsh population, Diabetes. 39:1479–1484 (1990).

    Article  PubMed  CAS  Google Scholar 

  27. Julier C, Hyer RN, Davies J, Merlin F, Soularue P, Briant L, Cathelineau G, Deschamps I, Rotter JI, Froguel P, Boitard C, Bell JI, Lathrop GM, Insulin-IGF2 region on chromosome 11p encodes a gene implicated in HLA-DR4-dependent diabetes susceptibility, Nature. 354:155–159 (1991).

    Article  PubMed  CAS  Google Scholar 

  28. Bain SC, Prins JB, Hearne CM, Rodrigues NR, Rowe BR, Pritchard LE, Ritchie RJ, Hall JRS, Undlien DE, Ronningen KS, Dunger DB, Barnett AH, Todd JA, Insulin gene region-encoded susceptibility to type-1 diabetes is not restricted to HLA-DR4-positive individuals, Nature Genetics. 2:212–215 (1992).

    Article  PubMed  CAS  Google Scholar 

  29. Sten-Linder M, Wedell A, Isclius L, Efendic S, Luft R, Luthman H, DNA polymorphisms in the tyrosine hydroxylase/insulin/insulin-like growth factor II chromosomal region in relation to glucose and insulin responses, Diabetologia. 36:25–32 (1993).

    Article  PubMed  CAS  Google Scholar 

  30. Olansky L, Janssen R, Welling C, Permutt MA, Variability of the insulin gene in American Blacks with NIDDM analysis by single-strand conformational polymorphisms, Diabetes. 41:742–749 (1992).

    Article  PubMed  CAS  Google Scholar 

  31. Olansky L, Welling C, Giddings S, Adler S, Bourey R, Dowse G, Serjeantson S, Zimmet P, Permutt MA, A variant insulin promoter in non-insulin-dependent diabetes-mellitus, J Clin Invest. 89:1596–1602 (1992).

    Article  PubMed  CAS  Google Scholar 

  32. Taylor SI, Molecular mechanisms of insulin resistance — lessons from patients with mutations in the insulin-receptor gene, Diabetes. 41:1473–1490 (1992).

    Article  PubMed  CAS  Google Scholar 

  33. O’Rahilly S, Krook A, Morgan R, Rees A, Flier JS, Moller DE, Insulin receptor and insulin-responsive glucose transporter (GLUT-4) mutations and polymorphisms in a Welsh typc-2 (non-insulin-dependent) diabetic population, Diabetologia. 35:486–489 (1992).

    Article  PubMed  Google Scholar 

  34. Elbein S, Ward W, Beard J, Permutt M, Molecular-genetic analysis and assessment of insulin action and pancreatic b-ccll function, Diabetes. 37:377–382 (1988).

    Article  PubMed  CAS  Google Scholar 

  35. Cox NJ, Epstein PA, Spiclman RS, Linkage studies on NIDDM and the insulin and insulin-receptor genes, Diabetes. 38:653–658 (1989).

    Article  PubMed  CAS  Google Scholar 

  36. Elbein SC, Sorensen LK, Taylor M, Linkage analysis of insulin-receptor gene in familial NIDDM, Diabetes. 41:648–656 (1992).

    Article  PubMed  CAS  Google Scholar 

  37. Takeda J, Seino Y, Yoshimasa Y, Fukumoto H, Koh G, Kuzuya H, Imura H, Seino S, Restriction fragment length polymorphism (RFLP) of the human insulin receptor gene in Japanese: its possible usefulness as a genetic marker, Diabetologia. 29:667–669 (1986).

    Article  PubMed  CAS  Google Scholar 

  38. McClain DA, Henry RR, Ullrich A, Olefsky JM, Restriction-fragment-lcngth polymorphism in insulin receptor gene and insulin resistance in NIDDM, Diabetes. 37:1071–1075 (1988).

    Article  PubMed  CAS  Google Scholar 

  39. Raboudi SH, Mitchell BD, Stern MP, Eifler CW, Haffner SM, Hazuda HP, Frazier ML, Type II diabetes mellitus and polymorphism of insulin-receptor gene in Mexican Americans, Diabetes. 38:975–980 (1989).

    Article  PubMed  CAS  Google Scholar 

  40. Xiang K-S, Cox NJ, Sanz N, Huang P, Karam JH, Bell GI, Insulin-receptor and apolipoprotein genes contribute to development of NIDDM in Chinese Americans, Diabetes. 38:17–23 (1989).

    Article  PubMed  CAS  Google Scholar 

  41. Sten-Linder M, Vilhelmsdottcr S, Wedcll A, Stern I, Pollarc T, Arner P, Efendic S, Luft R, Luthman H, Screening for insulin receptor gene DNA polymorphisms associated with glucose intolerance in a Scandinavian population, Diabetologia. 34:265–270 (1991).

    Article  PubMed  CAS  Google Scholar 

  42. Seino S, Bell GI, Alternative splicing of human insulin receptor messenger RNA, Biochem Biophys Res Commun. 159:312–316 (1989).

    Article  PubMed  CAS  Google Scholar 

  43. Moller DE, Yokota A, Caro JF, Flier JS, Tissue-specific expression of two alternatively spliced insulin receptor mRNAs in man, Mol Endocrinol. 3:1263–1269 (1989).

    Article  PubMed  CAS  Google Scholar 

  44. Mosthaf L, Grako K, Dull TJ, Cousscns L, Ullrich A, McClain DA, Functionally distinct insulin receptors generated by tissue-specific alternative splicing, EMBO J. 9:2409–2413 (1990).

    PubMed  CAS  Google Scholar 

  45. Goldstein BJ, Dudley AL, The rat insulin receptor: primary structure and conservation of tissue-specific alternative messenger RNA splicing, Mol Endocrinol. 4:235–244 (1990).

    Article  PubMed  CAS  Google Scholar 

  46. Goldstein BJ, Dudley AL, Heterogeneity of messenger RNA that encodes the rat insulin receptor is limited to the domain of exon 11, Diabetes. 41:1293–1300 (1992).

    Article  PubMed  CAS  Google Scholar 

  47. Norgren S, Zierath J, Galuska D, Wallberg-Henriksson H, Luthman H, Differences in the ratio of RNA encoding the A-and B-forms of the insulin receptor between control subjects and NIDDM patients, Diabetes. (1993).

    Google Scholar 

  48. Brent GA, Moore DD, Larsen PR, Thyroid hormone receptor regulation of gene expression, Annu Rev Physiol. 53:17–35 (1991).

    Article  PubMed  CAS  Google Scholar 

  49. McClain DA, Different ligand affinities of the 2 human insulin receptor splice variants are reflected in parallel changes in sensitivity for insulin action, Mol Endocrinol. 5:734–739 (1991).

    Article  PubMed  CAS  Google Scholar 

  50. Kellerer M, Lammers R, Ermel B, Tippmer S, Vogt B, Obermaicr-Kusser B, Ullrich A, Häring HU, Distinct α-subunit structures of human insulin rcccptor-A and receptor-B variants determine differences in tyrosine kinase activities, Biochemistry. 31:4588–4596 (1992).

    Article  PubMed  CAS  Google Scholar 

  51. Yamaguchi Y, Flier JS, Yokota A, Bcneckc H, Backer JM, Moller DE, Functional properties of two naturally occurring isoforms of the human insulin receptor in Chinese hamster ovary cells, Endocrinol. 129:2058–2066 (1991).

    Article  CAS  Google Scholar 

  52. Randle PJ, Rate of release of insulin in vitro, in: “Ciba Foundation Colloquia Endocrinol,” ed., (1964).

    Google Scholar 

  53. Matschinsky FM, Ellcrman JE, Metabolism of glucose in the islets of Langerhans, J Biol. Chem. 243:2730–2736 (1968).

    PubMed  CAS  Google Scholar 

  54. Meglasson MD, Matschinsky FM, New perspectives on pancreatic islet glucokinase, Am J Physiol. 246:E1–13 (1984).

    PubMed  CAS  Google Scholar 

  55. Matschinsky FM, Glucokinse as glucose sensor and metabolic signal generator in pancreatic beta-cells and hepatocytcs, Diabetes. 39:647–652 (1990).

    Article  PubMed  CAS  Google Scholar 

  56. Froguel P, Vaxillaire M, Sun F, Velho G, Zouali H, Butel MO, Lcsagc S, Vionnct N, Clement K, Fougerousse F, Tanizawa Y, Weissenbach J, Beckmann JS, Lathrop GM, Passa P, Permutt MA, Cohen D, Close linkage of glucokinasc locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus, Nature. 356:162–164 (1992).

    Article  PubMed  CAS  Google Scholar 

  57. Vionnet N, Stoffel M, Takeda J, Yasuda K, Bell GI, Zouali H, Lesage S, Velho G, Iris F, Passa P, Froguel P, Cohen D, Nonsense mutation in the glucokinase gene causes early-onset non-insulin-dependent diabetes-mellitus, Nature. 356:721–722 (1992).

    Article  PubMed  CAS  Google Scholar 

  58. Hattersley AT, Turner RC, Permutt MA, Patel P, Tanizawa Y, Chiu KC, Orahilly S, Watkins PJ, Wainscoat JS, Linkage of type-2 diabetes to the glucokinase gene, Lancet. 339:1307–1310 (1992).

    Article  PubMed  CAS  Google Scholar 

  59. Stoffel M, Froguel P, Takeda J, Zouali H, Vionnet N, Nishi S, Weber IT, Harrison RW, Pilkis SJ, Lesage S, Vaxillaire M, Velho G, Sun F, Iris F, Passa P, Cohen D, Bell GI, Human glucokinase gene — isolation, characterization, and identification of 2 missense mutations linked to early-onset non-insulin-dependent (type-2) diabetes-mellitus, Proc Natl Acad Sci USA. 89:7698–7702 (1992).

    Article  PubMed  CAS  Google Scholar 

  60. Stoffel M, Patel P, Lo YMD, Hattersley AT, Lucassen AM, Page R, Bell JI, Bell GI, Turner RC, Wainscoat JS, Missense glucokinase mutation in maturity-onset diabetes of the young and mutation screening in late-onset diabetes, Nature Genetics. 2:153–156 (1992).

    Article  PubMed  CAS  Google Scholar 

  61. Katagiri H, Asano T, Ishihara H, Inukai K, Anai M, Miyazaki J, Tsukuda K, Kikuchi M, Yazaki Y, Oka Y, Nonsense mutation of glucokinase gene in late-onset non-insulin-dependent diabetes-mcllitus, Lancet. 340:1316–1317 (1992).

    Article  PubMed  CAS  Google Scholar 

  62. Sakura H, Eto K, Kadowaki H, Simokawa K, Ueno H, Koda N, Fukushima Y, Akanuma Y, Yazaki Y, Kadowaki T, Structure of the human glucokinase gene and identification of a missense mutation in a Japanese patient with early-onset non-insulin-dependcnt diabetes-mellitus, J Clin Endocriol Metabol. 75:1571–1573 (1992).

    Article  CAS  Google Scholar 

  63. Cook JTE, Hattersley AT, Christopher P, Bown E, Barrow B, Patel P, Shaw JAG, Cookson WOCM, Permutt MA, Turner RC, Linkage analysis of glucokinasc gene with NIDDM in Caucasian pedigrees, Diabetes. 41:1496–1500 (1992).

    Article  PubMed  CAS  Google Scholar 

  64. Permutt MA, Chiu KC, Tanizawa Y, Glucokinasc and NIDDM a candidate gene that paid off, Diabetes. 41:1367–1372 (1992).

    Article  PubMed  CAS  Google Scholar 

  65. Velho G, Froguel P, Clement K, Pueyo ME, Rakotoambinina B, Zouali H, Passa P, Cohen D, Robert JJ, Primary pancreatic beta-cell secretory defect caused by mutations in glucokinase gene in kindreds of maturity onset diabetes of the young, Lancet. 340:444–448 (1992).

    Article  PubMed  CAS  Google Scholar 

  66. Chiu KC, Province MA, Permutt MA, Glucokinase gene is genetic marker for NIDDM in American Blacks, Diabetes. 41:843–849 (1992).

    Article  PubMed  CAS  Google Scholar 

  67. Wallace DC, Mitochondrial genetics: a paradigm for ageing and degenerative diseases?, Science. 256:628–632 (1992).

    Article  PubMed  CAS  Google Scholar 

  68. Wallace DC, Diseases of the milochondrial DNA, Annu Rev Biochem. 61:1175–1212 (1992).

    Article  PubMed  CAS  Google Scholar 

  69. Ballinger SW, Shoffner JM, Hedaya EV, Trounce I, Polak MA, Koontz DA, Wallace DC, Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion, Nature Genetics. 1:11–15 (1992).

    Article  PubMed  CAS  Google Scholar 

  70. Rötig A, Bessis JL, Romero N, Cormier V, Saudubray JM, Narcy P, Lenoir G, Rustin P, Munnich A, Maternally inherited duplication of the mitochondrial genome in a syndrome of proximal tubulopathy, diabetes-mellilus, and cercbellar ataxia, American Journal of Human Genetics. 50:364–370 (1992).

    PubMed  Google Scholar 

  71. van den Ouweland JMW, Lemkes HHPJ, Ruitcnbcck W, Sandkuijl LA, de Vijlder MF, Slruyvenberg PAA, van de Kamp JJP, Maassen JA, Mutation in milochondrial transfer RNA(Leu(UUR)) gene in a large pedigree with maternally transmitted type-II diabetes-Mellitus and deafness, Nature Genetics. 1:368–371 (1992).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Luthman, H., Delin, I., Glaser, A., Luft, R., Norgren, S., Wedell, A. (1993). Molecular Genetics of NIDDM and the Genes for Insulin and Insulin Receptor. In: Östenson, C.G., Efendić, S., Vranic, M. (eds) New Concepts in the Pathogenesis of NIDDM. Advances in Experimental Medicine and Biology, vol 334. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2910-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2910-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6262-3

  • Online ISBN: 978-1-4615-2910-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics