Skip to main content

Regulation of Cytoplasmic Free Ca2+ in Insulin-Secreting Cells

  • Chapter
New Concepts in the Pathogenesis of NIDDM

Abstract

The cytoplasmic free Ca2+ concentration([Ca2+]i) has a fundamental role in the β-cell stimulus-secretion coupling and is regulated by a sophisticated interplay between nutrients, hormones and neurotransmitters. Metabolism of glucose and other nutrients leads to ATP generation, closure of ATP-regulated K+-channels, depolarization, opening of voltage-activated L-type Ca2+-channels, increase in [Ca2+]i and insulin release (1,2). Hormones and neurotransmitters affect the β-cell through the activation of receptors coupled to various effector systems, such as the adenylate cyclase (AC) or phospholipase C (PLC) system (2). Upon activation of these systems, cAMP is formed or phosphatidyl inositol 4,5-bisphosphate is hydrolysed, resulting in the formation of inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). Whereas InsP3 mobilizes intracellularly bound Ca2+, most probably from the endoplasmic reticulum, DAG activates protein kinase C (PKC) (1–3). Although InsP3 increases [Ca2+]i, there is little effect on insulin release, suggesting that the trisphosphate is not primarily involved as a signal for exocytosis in the β-cell (3). With regard to PKC, the physiological role is more clear and this enzyme is involved as a modulator of multiple steps in the β-cell signal-transduction pathway (1–3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prentki, M. and Matschinsky, F.M. Ca2+, cAMP and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev 1987, 67: 1185–1248.

    PubMed  CAS  Google Scholar 

  2. Efendic, S., Kindmark, H. and Berggren, P-O. Mechanisms involved in the regulation of the insulin secretory process. J Internal Med 1991, 229: 9–22.

    Article  Google Scholar 

  3. Berggren, P-O., Rorsman, P., Efendic, S., Östenson, C-G., Flatt, P.R., Nilsson, T., Arkhammar, P. and Juntti-Berggren, L. Mechanisms of action of entero-insular hormones, islet peptides and neural input on the insulin secretory process. In Nutrient Regulation of Insulin Secretion (P.R Flatt ed.), Portland Press London, 1992, 289–318.

    Google Scholar 

  4. Ämmälä, C., Larsson, O., Berggren, P-O., Bokvist, K., Juntti-Berggren, L., Kindmark, H. and Rorsman, P. Inositol trisphosphate-dependent periodic activation of a Ca2+-activated K+-conductance in glucose-stimulated pancreatic β-cells. Nature 1991, 353: 849–852.

    Article  PubMed  Google Scholar 

  5. Islam, Md.S., Rorsman, P. and Berggren, P-O. Ca2+-induced Ca2+-release in insulin-secreting cells. FEBS Lett 1992, 296: 287–291.

    Article  PubMed  CAS  Google Scholar 

  6. Catterall, W.A. Structure and function of voltage-dependent ion channels. Science 1988, 242:50–61

    Article  PubMed  CAS  Google Scholar 

  7. Tsien, R.W., Ellinor, P.T. and Horne, W.A. Molecular diversity of voltage-dependent Ca2+channels. Trends in Pharmac Sci 1991, 12:349–354.

    Article  CAS  Google Scholar 

  8. Nowycky, M.C., Aaron P.F. and Tsien R.W. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 1985, 316:440–443.

    Article  PubMed  CAS  Google Scholar 

  9. Dean, P.M. and Matthews, C.K. Electrical activity in pancreatic islet cells. Nature 1968, 219:389–390

    Article  PubMed  CAS  Google Scholar 

  10. Dean, P.M. and Matthews, C.K. Glucose-induced electrical activity in pancreatic islet cells. J Physiol (London) 1970, 210:255–264.

    CAS  Google Scholar 

  11. Meissner, H.P. and Schmelz, H. Membrane potential of beta cells in pancreatic islets. Pflügers Arch 1974, 351:195–206.

    Article  PubMed  CAS  Google Scholar 

  12. Ashcroft, F.M. and Rorsman, P. Electrophysiology of the pancreatic β-cell. Prog. Biophys. molec. Biol. 1991, 54:87–143.

    Article  Google Scholar 

  13. Velasco, J.M. Calcium channels in insulin-secreting RINm5F cell line. J Physiol (London) 1987, 398:15P

    Google Scholar 

  14. Ashcroft, F.M., Kelly, R.P. and Smith, P.A. Two types of Ca channel in rat pancreatic ß-cells. Pfleugers Arch 1990, 415:504–506.

    Article  CAS  Google Scholar 

  15. Shenolikar, S. and Nairn, A.C. Protein phosphatases: Recent progress. In Advances in Second Messenger and Phosphoprotein Research. Vol 23 (P. Greengard and J.A. Robinsson eds.), Raven Press, Ltd, New York 1991, 1–121

    Google Scholar 

  16. Chad, J.E. and Eckert, R. An enzymatic mechanism for calcium current inactivation in dialyzed Helix neurons. J Physiol 1986, 378:31–51.

    PubMed  CAS  Google Scholar 

  17. Rorsman, P., Ashcroft, F.M. and Trube, G. Single Ca channel currents in mouse pancreatic ß-cells. Pflügers Arch 1988, 412:597–603.

    Article  PubMed  CAS  Google Scholar 

  18. Henquin, J.C. and Meissner, H.P. Cyclic adenosine monophosphate differently affects the response of mouse pancreatic ß-cells to various amino acids. J Physiol 1986, 381:77–93.

    PubMed  CAS  Google Scholar 

  19. Di Virgilio, F., Pozzan, T., Wollheim, C.B. Vicentini, L.M. and Meldolesi, J. Tumor promoter phorbol myristate acetate inhibits Ca2+influx through voltage-dependent Ca2+channels in two secretory cell lines, PC 12 and RINm5F. J Biol Chem 1986, 261:32–35.

    PubMed  CAS  Google Scholar 

  20. Yada, T., Russo, L.L. and Sharp, G.W.G. Phorbol ester-stimulated secretion by RINm5F insulinoma cells is linked with membrane depolarization and an increase in cytosolic free Ca2+concentration. J Biol Chem 1989, 264:2455–2462.

    PubMed  CAS  Google Scholar 

  21. Rorsman, P., Arkhammar, P and Berggren, P-O. Voltage-activated Na+ currents and their suppression by phorbol ester in clonal insulin-producing RINm5F cells. Am J Physiol 1986, 251:C912–919.

    PubMed  CAS  Google Scholar 

  22. Smith, P.A., Rorsman, P. and Ashcroft, F.M. Modulation of dihydropyridine-sensitive Ca2+channels by glucose metabolism in mouse pancreatic ß-cells. Nature 1989, 342:550–553.

    Article  PubMed  CAS  Google Scholar 

  23. Velasco, J.M., Petersen, J.U.H. and Petersen, O.H. Single channel Ba2+ currents in insulin secreting cells are activated by glyceraldehyde stimulation. FEBS Lett 1988, 213:366–370.

    Article  Google Scholar 

  24. Velasco, J.M. and Petersen, O.H. The effects of a cell-permeable diacylglycerol analogue on single Ca2+(Ba2+) channel currents in the insulin-secreting line RINm5F. Q J exp Physiol 1989, 74:367–370.

    PubMed  CAS  Google Scholar 

  25. Bialojan, C. and Takai, A. Inhibitory effect of a marine-spong toxin, ocadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J 1988, 256:283–290.

    PubMed  CAS  Google Scholar 

  26. Berridge, M. J. Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem. J. 1983, 212: 849–858.

    PubMed  CAS  Google Scholar 

  27. Streb, H., Irvine, R. F., Berridge, M. J., and Schulz, I. Release of Ca2+from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 1983, 306: 67–69.

    Article  PubMed  CAS  Google Scholar 

  28. Prentki, M., Biden, T. J., Janjic, D., Irvine, R. F., Berridge, M. J., and Wollheim, C. B. Rapid mobilization of Ca2+from rat insulinoma microsomes by inositol-1,4,5-trisphosphate. Nature 1984, 309: 562–564.

    Article  PubMed  CAS  Google Scholar 

  29. Biden, T. J., Prentki, M., Irvine, R. F., Berridge, M. J., and Wollheim, C. B. Inositol 1,4,5-trisphosphate mobilizes intracellular Ca2+from permeabilized insulin-secreting cells. Biochem. J. 1984, 223: 467–473.

    PubMed  CAS  Google Scholar 

  30. Nilsson, T., Arkhammar, P., Hallberg, A., Hellman, B. and Berggren, P.-O. Characterization of the inositol 1,4,5-trisphosphate-induced Ca2+release in pancreatic ß-cells. Biochem. J. 1987, 248: 329–336.

    PubMed  CAS  Google Scholar 

  31. Muallem, S., Pandol, S. J. and Beeker, T. J. Hormone-evoked calcium release from intracellular stores is a quantal process. J. Biol. Chem. 1989, 264: 205–212.

    PubMed  CAS  Google Scholar 

  32. Meyer, T., and Stryer, L. Transient Ca2+release induced by successive increments of inositol 1,4,5-trisphosphate. Proc. Natl. Acad. Sci. USA. 1990, 87: 3841–3845.

    Article  PubMed  CAS  Google Scholar 

  33. Supattapone, S., Worley, P. F., Baraban, J. M., and Snyder, S. H. Solubilization, purification, and characterization of an inositol trisphosphate receptor. J. Biol. Chem. 1988, 263:1530–1534.

    PubMed  CAS  Google Scholar 

  34. Furuichi, T., Yoshikawa, S., Miyawaki, A., Wad, K., Maeda, N., and Mikoshiba, K. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 1989, 342: 32–38.

    Article  PubMed  CAS  Google Scholar 

  35. Supattapone, S., Danoff, S. K., Theibert, A., Joseph, S. K., Steiner, J. and Snyder, S. H. Cyclic AMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. Proc. Natl. Acad. Sci. USA. 1988, 85: 8747–8750.

    Article  PubMed  CAS  Google Scholar 

  36. Nilsson, T., Zwiller, J., Boynton, A. L., and Berggren, P.-O. Heparin inhibits IP3-induced Ca2+release in permeabilized pancreatic ß-cells. FEBS lett. 1988, 229: 211–214.

    Article  PubMed  CAS  Google Scholar 

  37. Worley, P. F., Baraban, J. M., Supattapone, S., Wilson, V. S., and Snyder, S. H. Characterization of inositol trisphosphate receptor binding in brain: regulation by pH and calcium. J. Biol. Chem. 1987, 262:12132–12136.

    PubMed  CAS  Google Scholar 

  38. Ferris, C. D., Huganir, R. L., Snyder, S. H. Inositol trisphosphate receptor: phosphorylation by protein kinase C and calcium calmodulin-dependent protein kinases in reconstituted lipid vesicles. Proc. Natl. Acad. Sci. USA. 1990, 87:2147–2151.

    Article  PubMed  CAS  Google Scholar 

  39. Juntti-Berggren, L., Arkhammar, P., Nilsson, T., Rorsman, P., and Berggren, P.-O. Glucose-induced increase in cytoplasmic pH in pancreatic ß-cells is mediated by Na+/H+ exchange, an effect not dependent on protein kinase C. J. Biol. Chem. 1991, 266:23537–23541.

    PubMed  CAS  Google Scholar 

  40. Ferris, C. D., Huganir, R. L., Bredt, D. S., Cameron, A. M., and Snyder, S. H. Calcium flux mediated by purified inositol 1,4,5-trisphosphate receptor in reconstituted lipid vesicles is allosterically regulated by adenine nucleotides. Proc. Natl. Acad. Sci. USA. 1991, 88: 2232–2235.

    Article  PubMed  CAS  Google Scholar 

  41. Jean, T., and Klee, C. B. Calcium modulation of inositol 1,4,5-trisphosphate-induced Ca2+release from neuroblastoma x glioma hybrid (NG 108-15) microsomes. J. Biol. Chem. 1986, 261:16414–16420.

    PubMed  CAS  Google Scholar 

  42. Willems, P. H. G. M., De Jong, M. D., de Pont, J. J. H.H. M., and VanOs C. H. Inhibition of inositol 1,4,5-trisphosphate-induced Ca2+release in permeabilized pancreatic acinar cells by hormonal and phorbol ester pretreatment. J. Biol. Chem. 1990, 265:681–687.

    CAS  Google Scholar 

  43. Bezprovanny, I., Watras, J., and Ehrlich, B. E. Bell-shaped Ca2+response curves of Ins(1,4,5)P3-and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature. 1991, 351: 751–754.

    Article  Google Scholar 

  44. Irvine, R. F. ‘Quantal’ Ca2+release and the control of Ca2+entry by inositol phosphates — a possible mechanism. FEBS Lett. 1990, 263: 5–9.

    Article  PubMed  CAS  Google Scholar 

  45. Arkhammar, P., Nilsson, T. and Berggren, PO. Stimulation of insulin release by phorbol ester 12-O-tertradecanoylphorbol 13-acetate in the clonal cell line RINm5F depite a lowering of the free cytoplasmic Ca2+concentration. Biochim Biophys Acta 1986, 887:236–241.

    Article  PubMed  CAS  Google Scholar 

  46. Hill, T. D., Dean, N. M., and Boynton, A. L. Inositol 1,3,4,5-tetrakisphosphate induces Ca2+sequestration in rat liver cells. Science. 1988, 242: 1176–1178.

    Article  PubMed  CAS  Google Scholar 

  47. Islam, M. S., Nilsson, T., Rorsman, P., and Berggren, P.-O. Interaction with the inositol 1,4,5-trisphosphate receptor promotes Ca2+sequestration in insulin-secreting cells. FEBS Lett. 1991, 288: 27–29.

    Article  PubMed  CAS  Google Scholar 

  48. Dunlop, M. E., and Larkins, R. G. GTP-and inositol 1,4,5-trisphosphate-induced release of 45Ca2+from a membrane store co-localized with pancreatic-islet-cell plasma membrane. Biochem. J. 1988, 253: 67–72.

    PubMed  CAS  Google Scholar 

  49. Wolf, B. A., Florholmen, J., Colca, J. R., and McDaniel, M. L. GTP mobilization of Ca2+from the endoplasmic reticulum of islets. Biochem. J. 1987, 242:137–141.

    PubMed  CAS  Google Scholar 

  50. Endo, M. Calcium release from the sarcoplasmic reticulum. Physiol. Rev. 1977, 57: 71–108.

    PubMed  CAS  Google Scholar 

  51. Kuba, K. Release of Ca2+ions linked to the activation of potassium conductance in a caffeine-treated sympathetic neurone. J. Gen. Physiol. 1980, 298:251–269.

    CAS  Google Scholar 

  52. Cheek, T. R., Barry, V. A., Berridge, M. J., and Missiaen, L. Bovine adrenal chromaffin cells contain an inositol 1,4,5-trisphosphate-insensitive but caffeine-sensitive Ca2+store that can be regulated by intraluminal free Ca2+. Biochem. J. 1991, 275:697–701.

    PubMed  CAS  Google Scholar 

  53. Dehlinger-Kremer, M., Zeuzem, S. and Schulz, I. Interaction of caffeine-, IP3-and vanadate sensitive Ca2+pools in acinar cells of the exocrine pancreas. J. Membr. Biol. 1991, 119: 85–100.

    Article  PubMed  CAS  Google Scholar 

  54. Galione, A., Lee, H. C., and Busa, W. B. Ca2+-induced Ca2+release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science 1991, 253:1143–1146.

    Article  PubMed  CAS  Google Scholar 

  55. Koshiyama, H., Lee, H. C., and Tashijan, A. H. Jr. Novel mechanisms of intracellular calcium release in pituitary cells. J. Biol. Chem. 1991, 266:16985:16988.

    PubMed  CAS  Google Scholar 

  56. Islam, M. S., Rorsman, P. and Berggren, P.-O. Ca2+-induced Ca2+release in insulin-secreting cells. FEBS Lett. 1992, 296:287–291.

    Article  PubMed  CAS  Google Scholar 

  57. Trimm, J. L., Salama, G. and Abramson, J. J. Sulfhydryl oxidation induces rapid calcium release from sarcoplasmic reticulum vesicles. J. Biol. Chem. 1986, 261:16092–16098.

    PubMed  CAS  Google Scholar 

  58. Zaidi, N. F., Lagenaur, C. F., Abramson, J. J., Pessah, I. and Salama, G. Reactive disulfides trigger Ca2+release from sarcoplasmic reticulum via an oxidation reaction. J. Biol. Chem. 1989, 264: 21725–21736.

    PubMed  CAS  Google Scholar 

  59. Swann, K. Thimerosal causes calcium oscillations and sensitizes calcium-induced calcium release in unfertilized hamster eggs. FEBS Lett. 1991, 278:175–178.

    Article  PubMed  CAS  Google Scholar 

  60. Berridge, M.J. and Irvine, R.F. Inositol phosphates and cell signalling. Nature 1989, 341: 197–205.

    Article  PubMed  CAS  Google Scholar 

  61. Berggren, P-O., Arkhammar, P., Bokvist, K., Efendic, S., Islam, MdS., Juntti-Berggren, L., Kindmark, H., Köhler, M., Larsson, O., Nilsson, T., Rorsman, P. and Ämmälä, C. Intracellular Ca2+-stores and Ca2+-oscillations in insulin secreting cells. 20th Karolinska Institute Nobel Conference on Calcium Signalling 1992, 83–86.

    Google Scholar 

  62. Kindmark, H., Köhler, M., Efendic, S., Rorsman, P., Larsson, O. and Berggren, P-O. Protein kinase C activity affects glucose-induced oscillations in cytoplasmic free Ca2+in the pancreatic β-cell. FEBS Lett. 1992, 303:85–90.

    Article  PubMed  CAS  Google Scholar 

  63. Grapengiesser, E., Gylfe, E. and Hellman, B. Three types of cytoplasmic Ca2+-oscillations in stimulated pancreatic β-cells. Arch Biochem Biophys. 1989, 268:404–407.

    Article  PubMed  CAS  Google Scholar 

  64. Valdeolmilos, M., Santos, RM., Contreras, D., Soria, B. and Rosario, L.M. Glucoseinduced oscillations of intracellular Ca2+concentration resembling bursting electrical activity in single mouse islets of Langerhans. FEBS Lett. 1989, 259:19–23.

    Article  Google Scholar 

  65. Longo, E.A., Tornheim, K., Deeney, J.T., Varnum, B.A., Tillotson, D., Prentki, M. and Corkey, B.E. Oscillations in cytosolic free Ca2+, oxygen consumption and insulin secretion in glucose-stimulated rat pancreatic islets. J Biol Chem 1991, 266:9314–9319.

    PubMed  CAS  Google Scholar 

  66. Pralong, W-F., Gjinovci, A. & Wollheim, C.B. Ca2+-modulation of redox state in single β-cells exposed to nutrients. Diabetes 1991, 40:317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berggren, PO. et al. (1993). Regulation of Cytoplasmic Free Ca2+ in Insulin-Secreting Cells. In: Östenson, C.G., Efendić, S., Vranic, M. (eds) New Concepts in the Pathogenesis of NIDDM. Advances in Experimental Medicine and Biology, vol 334. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2910-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2910-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6262-3

  • Online ISBN: 978-1-4615-2910-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics