Skip to main content

Gluconeogenesis in Type 2 Diabetes

  • Chapter
New Concepts in the Pathogenesis of NIDDM

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 334))

Abstract

There is now considerable evidence that increased hepatic glucose output rather than reduced peripheral glucose uptake is the primary factor responsible for both fasting and postprandial hyperglycemia in type 2 diabetes1,2. It is, therefore, appropriate to consider the mechanisms that may be involved in permitting and promoting this excessive hepatic output of glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.E. Gerich, Is muscle the major site of insulin resistance in type 2 (noninsulin-dependent) diabetes mellitus?, Diabetologia. 34:607–610 (1991).

    Article  PubMed  CAS  Google Scholar 

  2. A. Mitrakou, D. Kelley, T. Veneman, T. Jenssen, T. Pangburn, J. Reilly, and J. Gerich, Contribution of abnormal muscle and liver glucose metabolism to postprandial hyperglycemia in noninsulin-dependent diabetes mellitus, Diabetes. 39:1381–1390 (1990).

    Article  PubMed  CAS  Google Scholar 

  3. J. Wahren, P. Felig, E. Cerasi, and R. Luft, Splanchnic and peripheral glucose and amino acid metabolism in diabetes mellitus, J Clin Invest, 51:1870–1878 (1972).

    Article  PubMed  CAS  Google Scholar 

  4. R.H. Chochinov, H.F. Bowen, and J.A. Moorhouse, Circulating alanine disposal in diabetes mellitus, Diabetes. 27:420–426 (1978).

    Article  PubMed  CAS  Google Scholar 

  5. R.C. DeMeutter and W.W. Eeve, Conversion of DL-lactate-2-14C or pyruvate-2-14C to blood glucose in humans: effect of diabetes, insulin, tolbutamide and glucose load, J Clin Invest. 42:523–533 (1963).

    Article  Google Scholar 

  6. G.A. Reichard, F.N. Moury, N.J. Hochella, A.L. Patterson and S. Weinhouse, Quantitative estimation of the Cori Cycle in humans, J Biochem. 238:495–501 (1963).

    CAS  Google Scholar 

  7. C. Waterhouse and J. Keilson, The contribution of glucose to alanine metabolism in man, J Lab Clin Med. 92:803–812 (1978).

    PubMed  CAS  Google Scholar 

  8. J. Zawadski, R. Wolfe, D. Mott, S. Lillioja, B. Howard and C. Bogardus, Increased rate of Cori Cycle in obese subjects with NIDDM and effects of weight reduction, Diabetes. 37:154–159 (1988).

    Article  Google Scholar 

  9. J. Katz, Determination of gluconeogenesis in vivo with [14C]-labelled substrates, Am J Physiol. 248:R331–R339 (1985).

    Google Scholar 

  10. A. Consoli, N. Nurjhan, F. Capani, and J.E. Gerich, Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM, Diabetes. 38(5) 550–557 (1989).

    Article  PubMed  CAS  Google Scholar 

  11. C. Desrosiers, F. David, M. Garneau and H. Brunengraber, Nonhomogeneous labeling of liver mitochondrial acetyle CoA, J Biol Chem. 266:1574–1578 (1991).

    CAS  Google Scholar 

  12. W. Schumann, I. Magnusson, V. Chandramouli, K. Kumaran, J. Wahren and B. Landau, Metabolism of [2-14C] acetate and its use in assessing hepatic Krebs cycle activity and gluconeogenesis, J Biol Chem. 266:6985–6990 (1991).

    PubMed  CAS  Google Scholar 

  13. A. Consoli, N. Nurjhan, J. Reilly, D. Bier, and J. Gerich, Mechanism of increased gluconeogenesis in noninsulin-dependent diabetes mellitus, J Clin Invest. 86:2038–2045 (1990).

    Article  PubMed  CAS  Google Scholar 

  14. M. Korytkowski, A. Consoli, W. Pimenta, and J. Gerich, Pathogenesis of fasting hyperglycemia in NIDDM, Diabetes. 41(1): 10(A)#40 (1992) (Abstract).

    Google Scholar 

  15. N. Nurjhan, A. Consoli, and J. Gerich, Increased lipolysis and its consequences on gluconeogenesis in noninsulin-dependent diabetes mellitus, J Clin Invest. 89:169–175 (1992).

    Article  PubMed  CAS  Google Scholar 

  16. A. Virkamaki, I. Puhakainen, N. Nurjhan, J. Gerich and H. Yki-Jarvinen, Measurement of lactate formation from glucose using [6-3H] and [6-14C] glucose in humans, Am J Physiol. 259:397–404 (1990).

    Google Scholar 

  17. R. Kreisberg, Glucose-lactate interrelations in man, N Engl J Med. 287:132–137 (1972).

    Article  PubMed  CAS  Google Scholar 

  18. P. Felig, The glucose-alanine cycle, Metabolism. 22:179–207 (1973).

    Article  PubMed  CAS  Google Scholar 

  19. A. Bucci, I. Toft, T. Jenssen, D. Bier, and N. Nurjhan, Glutamine metabolism an its contribution to glucose and alanine production in man, Diabetes. 41(1):68A;#249 (1992) (Abstract).

    Article  Google Scholar 

  20. N. Nurjhan, F. Kennedy, A. Consoli, C. Martin, J. Miles and J. Gerich, Quantification of the glycolytic origin in plasma glycerol as an index of lipolysis in vivo, Metabolism. 37:371–377 (1988).

    Article  Google Scholar 

  21. J. Katz and J. McGarry, The glucose paradox: is glucose a substrate for liver metabolism, J Clin Invest. 74:1901–1909 (1984).

    Article  PubMed  CAS  Google Scholar 

  22. N. Nurjahan, Diabetologia. 33:A1–A4 (1990).

    Article  Google Scholar 

  23. P. Campbell, G. Bolli, and J. Gerich, Quantification of the relative impairment in actions of insulin on hepatic glucose production and peripheral glucose uptake in noninsulin-dependent diabetes mellitus, Metabolism. 37:15–22 (1988).

    Article  PubMed  CAS  Google Scholar 

  24. A. Mitrakou, D. Kelley, T. Veneman, T. Pangburn, J. Reilly, and J. Gerich, Role of reduced suppression of hepatic glucose output and diminished early insulin release in impaired glucose tolerance, N Engl J Med. 326:22–29 (1992).

    Article  PubMed  CAS  Google Scholar 

  25. A.R. Baron, L. Schaeffer, P. Shragg and O.G. Kolterman, Role of hyperglucogenesis in maintenance of increased rates of hepatic glucose output in type 2 diabetes, Diabetes. 36:274–283 (1987).

    Article  PubMed  CAS  Google Scholar 

  26. R. Unger and L. Orci, Physiology and pathophysiology of glucagon, Physiol Rev. 56:779–826 (1976).

    Google Scholar 

  27. J. Williamson, R. Kreisberg, and P. Felta, Mechanism for the stimulation of gluconeogenesis by fatty acids in perfused rat liver, Proc Nat’l Acad Sci. 56:247–254 (1966).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gerich, J.E., Nurjhan, N. (1993). Gluconeogenesis in Type 2 Diabetes. In: Östenson, C.G., Efendić, S., Vranic, M. (eds) New Concepts in the Pathogenesis of NIDDM. Advances in Experimental Medicine and Biology, vol 334. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2910-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2910-1_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6262-3

  • Online ISBN: 978-1-4615-2910-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics