Skip to main content

Substrate Specificity of Reduced and Oxidized Forms of Human Aldose Reductase

  • Chapter
Enzymology and Molecular Biology of Carbonyl Metabolism 4

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 328))

Abstract

NADPH-dependent oxidoreductases of the aldo-keto reductase family are widely distributed in man and animals (Wirth and Wermuth, 1985; Wermuth, 1985; Grimshaw and Mathur, 1989; Carper et al., 1987). The broad overlapping substrate specificities of these enzymes in the reduction of aldehydes and ketones suggests a role in detoxification of reactive carbonyls. Aldose reductase (EC 1.1.1.21; alditol: NAD(P) oxidoreductase) has received special attention because of its possible role in the development of diabetic complications (Gabbay, 1973; Kador and Kinoshita, 1985). Aldose reductase catalyzes the reduction of glucose to sorbitol in the polyol pathway which is normally a minor pathway for metabolism of glucose but may become important during hyperglycemia (Hers, 1956; Kador, 1988). Sorbitol accumulates in certain tissues that are prone to diabetic complications and may damage those tissues through a hyperosmotic mechanism (Kinoshita; 1974). Sorbitol may also interfere with the uptake and processing of myo-inositol, leading to impairment of cellular processes that are regulated by phosphatidylinositol metabolism (Greene et al., 1987; Finegold et al., 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beyer-Mears, A., Ku, L. and Cohen, M.P., 1984, Glomerular polyol accumulation in diabetes and its prevention by oral sorbinil, Diabetes 33: 604.

    Article  PubMed  CAS  Google Scholar 

  • Brownlee, M. in: “Complications of Diabetes Mellitus,” B. Draznin, S. Melmed and D. LeRoith, eds., A.R. Liss, New York (1989).

    Google Scholar 

  • Brownlee, M., Vlassara, H., Kooney, A., Ulrich, P. and Cerami, A., 1986, Aminoguanidine prevents diabetes induced arterial wall proteins crosslinking, Science 232: 1629.

    Article  PubMed  CAS  Google Scholar 

  • Brownlee, M., Vlassara, H. and Cerami, A. in: Diabetic Complications: Scientific and Clinical Aspects,” M.J.C. Crabbe, ed., Churchill-Livingstone, Edinburgh (1987).

    Google Scholar 

  • Carper, D., Nishimura, C., Shinohara, T., Dietzchold, B., Wistow, G., Craft, C., Kador, P. and Kinoshita, J.H., 1987, Aldose reductase and p-crystalline belong to the same protein super family as aldehyde reductase, FEBS Lett 220: 209.

    Article  PubMed  CAS  Google Scholar 

  • Finegold, D., Lattimer, S.A., Nolle, S., Bernstein, M. and Greene, D.A., 1982, Polyol pathway activity and myo-inositol metabolism: a suggested relationship in the pathogenesis of diabetic neuropathy, Diabetes 32: 988.

    Article  Google Scholar 

  • Gabbay, K.H., 1973, Role of sorbitol pathway in neuropathy, Adv. Metab. Dis. (Suppl. 2 ): 417.

    CAS  Google Scholar 

  • Greene, D.A., Lattimer, S.A. and Sima, A.A.F., 1987, Sorbitol, phosphoinositides, and sodium potassium-ATPase in the pathogenesis of diabetic complications, N.Engl. J. Med. 316: 599.

    Article  PubMed  CAS  Google Scholar 

  • Grimshaw, C.E. and Mather, E.J., 1989, Immunoquantitation of aldose reductase in human tissues, Anal. Biochem. 176: 66.

    Article  PubMed  CAS  Google Scholar 

  • Grimshaw, C.E., Shahbaz, M. and Putney, C.G., 1990, Mechanistic basis for nonlinear kinetics of aldehyde reduction catalyzed by aldose reductase, Biochem. 29: 9947.

    Article  CAS  Google Scholar 

  • Hers, H.G., 1956, Le mecanisme de la transformation de glucose en fructose par les vesicules seminale, Biochim. Biophys. Acta 22: 202.

    Article  PubMed  CAS  Google Scholar 

  • Kador, P.F., 1988, The role of aldose reductase in the development of diabetic complications, Med. Res. Rev. 8: 325.

    Article  PubMed  CAS  Google Scholar 

  • Kador, P.F. and Kinoshita, J.H., 1985, Role of aldose reductase in the development of diabetes-associated complications, Am. J. Med. 79: 8.

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita, J.H., 1974, Mechanisms initiating cataract formation. Proctor Lecture, Invest. Ophthalmol. 13: 713.

    PubMed  CAS  Google Scholar 

  • Kubiseski, T.J., Hyndman, D.J., Morjana, N.A. and Flynn, T.G., 1992, Studies on pig muscle aldose reductase, J. Biol. Chem. 267: 6510.

    PubMed  CAS  Google Scholar 

  • Mayer, J.H. and Tomlinson, D.R., 1983, Prevention of defects of axonal transport and nerve conduction velocity by oral administration of myo-inositol or an aldose reductase inhibitor in streptozotocin-diabetic rats, Diabetologia 25: 433.

    Article  PubMed  CAS  Google Scholar 

  • Pongor, S., Ulrich, P.C., Bencsath, F.A. and Cerami, A., 1984, Aging of proteins: isolation and identification of a fluorescent chromophore from the reaction of polypeptides with glucose, Proc. Natl. Acad. Sci. USA 81: 2684.

    Article  PubMed  CAS  Google Scholar 

  • Reichard, G.A., Jr., Skutches, C.L., Hoeldtke, R.D. and Owen, O.E., 1986, Acetone metabolism in humans during diabetic ketoacidosis, Diabetes 35: 668.

    Article  PubMed  Google Scholar 

  • Richard, S., Tamas, C., Sell, D.R and Monnier, V.M., 1991, Tissue-specific effects of aldose reductase inhibition on fluorescence and cross-linking of extracellular matrix in chronic galactosemia, Diabetes 40: 1049.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, W.G., Jr., Kinoshita, J.H. and Kador, P.F., 1986, The polyol pathway in retinal microangiopathy, Drugs 32: 19.

    Article  Google Scholar 

  • Simard-Duquense, N., Greselin, E., Gonzalez, R. and Dvornik, D., 1985, Prevention of cataract development in severely galactosemic rats by the aldose reductase inhibitor, tolrestat, Proc. Soc. Exp. Biol. Med. 178: 599.

    Google Scholar 

  • Thornalley, P.J., 1988, Modification of the glyoxalase system in human red blood cells by glucose in vitro, Biochem. J. 254: 751.

    PubMed  CAS  Google Scholar 

  • Unakar, N., Tsui, J. and Johnson, M., 1989, Aldose reductase inhibitors and prevention of galactose cataracts in rats, Invest Ophthalmol. Vis. Sci. 30: 1623.

    PubMed  CAS  Google Scholar 

  • Vander Jagt, D.L., Hunsaker, L.A., Robinson, B., Stangebye, L.A. and Deck, L.M., 1990a, Aldehyde and aldose reductases from human placenta: heterogeneous expression of multiple enzyme forms, J. Biol. Chem. 265: 10912.

    Google Scholar 

  • Vander Jagt, D.L., Robinson, B., Taylor, K.K. and Hunsaker, L.A., 1990b, Aldose reductase from human skeletal and heart muscle: interconvertible forms related by thiol-disulfide exchange, J. Biol. Chem. 265: 20982.

    Google Scholar 

  • Vander Jagt, D.L., Robinson, B., Taylor, K.K. and Hunsaker, L.A., 1992, Reduction of trioses by NADPH-dependent aldo-keto reductase: aldose reductase, methylglyoxal and diabetic complications, J. Biol. Chem. 267: 4564.

    Google Scholar 

  • Wermuth, B., Aldo-keto reductases, in: “Enzymology of Carbonyl Metabolism 2: Aldehyde Dehydrogenase, Aldo-Keto Reductase, and Alcohol Dehydrogenase”, T.G. Flynn and H. Weiner, eds., A.R. Liss, New York (1985).

    Google Scholar 

  • Williams, W.F. and Odom, J.D., 1986, Study of aldose reductase inhibition in intact lenses by 13C nuclear magnetic resonance spectroscopy, Science 233: 233.

    Google Scholar 

  • Wirth, H-P. and Wermuth, B., 1985, Immunochemical characterization of aldo-keto reductases from human tissues, FEBS Lett. 187: 280.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vander Jagt, D.L., Hunsaker, L.A. (1993). Substrate Specificity of Reduced and Oxidized Forms of Human Aldose Reductase. In: Weiner, H., Crabb, D.W., Flynn, T.G. (eds) Enzymology and Molecular Biology of Carbonyl Metabolism 4. Advances in Experimental Medicine and Biology, vol 328. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2904-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2904-0_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6259-3

  • Online ISBN: 978-1-4615-2904-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics