Skip to main content

CYS298 is Responsible for Reversible Thiol-Induced Variation in Aldose Reductase Activity

  • Chapter
Enzymology and Molecular Biology of Carbonyl Metabolism 4

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 328))

Abstract

Aldose reductase (EC 1.1.1.21) has been purified to apparent homogeneity from a variety of tissues including placenta, brain, nerves, kidney, muscle and lens. Multiple molecular forms of aldose reductase have been claimed to be isolated from bovine lens (Jedziniak et al, 1971) and bovine kidney (Gabbay et al 1974). These forms were subsequently described by some authors whereas others found a single form only (for a review see Wermuth, 1985). Conversion by a reducing agent (ß-mercaptoethanol) of one form to a more acidic but activity-retaining form was reported by Wermuth et al (1982), and differential susceptibility to inhibition of different enzyme forms was first described by Maragoudakis et al (1984). Nonlinear kinetics were often attributed to the presence of multiple forms. Thus, two kinetically distinct forms of human erythrocyte aldose reductase were postulated (Srivastava et al 1985) and the presence of bovine aldose reductase oxidized by oxygen radical generating systems was suggested as a possible cause for the nonlinear kinetics (Del Corso et al, 1987). More recently, data seem to firmly establish the existence of different forms of aldose reductase: “activated” and “unactivated” forms were isolated from bovine kidney (Grimshaw (1990) and their persistent peculiar kinetic behavior was then essentially rationalized (Grimshaw, 1991, Grimshaw et al 1990, Kubiseski et al, 1992). Recent advances in molecular biology led to the in vitro expression of rat lens aldose reductase (Old et al 1990) and human aldose reductase (Grundmann et al 1990, Carper et al 1990, Nishimura et al 1990, Bohren et al 1991). Multiple molecular forms of recombinant aldose reductase have so far not been reported with the exception of some charge heterogeneity that is evident upon isoelectric focusing (Bohren et al. 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bohren, K.M., Bullock, B., Wermuth, B., and Gabbay, K.H., 1989, The aldo-keto reductase superfamily, J. Biol. Chem. 264: 9547–9551

    PubMed  CAS  Google Scholar 

  • Bohren, K.M., Page, J.L., Shankar, R., Henry, S.P., and Gabbay, K.H., 1991, Expression of human aldose and aldehyde reductases: site-directed mutagenesis of a critical lysine262, J. Biol. Chem., 266: 24031–24037

    PubMed  CAS  Google Scholar 

  • Bohren, K.M., Page, J.L., Shankar, R., Henry, S.P., and Gabbay, K.H., 1991, Expression of human aldose and aldehyde reductases: site-directed mutagenesis of a critical lysine262, J. Biol. Chem., 266: 24031–24037

    PubMed  CAS  Google Scholar 

  • Bhatnagar, A., Liu, S., and Srivastava, S.K., 1989, Involvment of sulfhydryl residues in aldose reductase-inhibitor interaction, Mol. Pharmacol. 36: 825–830

    PubMed  CAS  Google Scholar 

  • Bhatnagar, A., Liu, S., Das, B., Ansari, N.H., and Srivastava, S.K., 1990, Inhibition kinetics of human kidney aldose reductase inhibitors, Biochem. Pharmacol. 30: 1115–1124

    Article  Google Scholar 

  • Carper, D., Sato S., Old, S., Chung, S. Kador, P.F. 1991, In vitro expression of human placental aldose reductase in Escherichia coli, Adv. Exp. Med. Biol. 284: 129–138

    Article  PubMed  CAS  Google Scholar 

  • Del Corso, A., Camici, M., and Mura, U. 1987, In vitro modification of bovine aldose reductase activity, Biochem. Biophys. Res. Commun. 148: 369–375

    Article  PubMed  CAS  Google Scholar 

  • Gabbay, K.H., and Cathcart, E.S., 1974, Purification and immunological identification of aldose reductase, Diabetes 23: 460–468

    PubMed  CAS  Google Scholar 

  • Gosh, S., Bock, S., Rokita, S., and Kaiser, E., 1986, Modification of the active site of alkaline phosphatase by site-directed mutagenesis, Science 231: 145–148

    Article  Google Scholar 

  • Grimshaw, C.E., 1990, Chromatographic separation of activated and unactivated forms of aldose reductase, Arch. Biochem. Biophys. 278: 273–276

    Article  PubMed  CAS  Google Scholar 

  • Grimshaw, C.E., 1991, A kinetic perspective on the peculiarity of aldose reductase, Adv. Exp. Med. Biol. 284: 217–228

    Article  PubMed  CAS  Google Scholar 

  • Grimshaw, C.E., Shahbaz, M., and Putney, C.G., 1990, Mechanistic basis for nonlinear kinetics of aldehyde reduction catalyzed by aldose reductase, Biochemistry 29: 9947–955

    Article  PubMed  CAS  Google Scholar 

  • Grimshaw, C.E., Shahbaz, M., and Putney, C.G., 1990, Spectroscopic and kinetic characterization of nonenzymic and aldose reductase mediated covalent NADP-glycolaldehyde adduct formation, Biochemistry 29: 9936–9946

    Article  PubMed  CAS  Google Scholar 

  • Grundmann, U., Bohn, H., Obermeier, R., and Amann E., 1990, Cloning and prokaryotic expression of a biologically active human placental aldose reductase, DM4. Cell. Biol. 9: 149–157

    CAS  Google Scholar 

  • He, J.J., Quiocho, A., 1991, A nonconservative Serine to Cysteine mutation in the sulfate-binding protein, a transport receptor, Science, 251: 1479–1481

    Article  PubMed  CAS  Google Scholar 

  • Jedziniak, J.A., and Kinoshita, J.H., 1971, Activators and inhibitors of of lens aldose reductase, Invest. Ophtalmol. 10: 357–366

    CAS  Google Scholar 

  • Kubiseski, T.J, Hyndman, D.J., Morjana, N.A, and Flynn, T.G. 1992, Studies on pig muscle aldose reductase — kinetic mechanism and evidence for slow conformational change upon coenzyme binding, J. Biol. Chem. 267: 6510–6517

    PubMed  CAS  Google Scholar 

  • Maragoudakis, M.E., Wasvary, J., Hankin, H. and Gargiuolo, P., 1984, Human placenta aldose reductase: forms sensitive and insensitive to inhibition by Alrestatin, Mol. Pharmacol. 25: 425

    PubMed  CAS  Google Scholar 

  • Nishimura, C., Matsuura Y., Kokai Y., Akera, T., Carper, D., Morjana., N., Lyons, C., and Flynn, T. G., 1990, Cloning and expression of human aldose reductase, J. Biol. Chem. 265: 9788–9792

    CAS  Google Scholar 

  • Old, S.E., Sato, S. Kador, P.F., and Carper, D.A., 1990, In vitro expression of rat lens aldose reductase in E.coli, Proc. Natl Acad. Sci. USA. 87: 4942–4955

    Article  CAS  Google Scholar 

  • Rondeau, J.-M, Tête-Favier, F., Podjarny, A., Reyman. J.-M., Barth, P., Biellmann, J.-F. and Moras, D., 1992, Novel NADPH-binding domain revealed by the crystal structure of aldose reductase, Nature 355: 469–472

    Article  PubMed  CAS  Google Scholar 

  • Rose, I.A., Hanson, K., Wilkinson, K.D., Wimmer, M.J., 1980, A suggestion for naming faces of ring compounds, Proc. Natl. Acad. Sci. USA, 77: 2439–2441

    Article  PubMed  CAS  Google Scholar 

  • Smithies, O., 1965, Disulfide-bond cleavage and formation in proteins, Science 150: 1595–1598

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, S.K., Hair, G.A., and Das, B., 1985, Activated and unactivated forms of human erythrocyte aldose reductase, Proc. Natl. Acad. Sci. USA 82: 7222–78226

    Article  PubMed  CAS  Google Scholar 

  • Wermuth, B., 1985, Aldo-keto reductases, in “Enzymology of Carbonyl Metabolism 2: Aldehyde Dehydrogenase, Aldo-Keto Reductase, and Alcohol Dehydrogenase”, Flynn, T.G. and Weiner, H., eds., Alan R.Liss Inc., New York., 209–230

    Google Scholar 

  • Wermuth, B. Bürgisser, H., Bohren, K.M., and von Wartburg, J.-P., 1982, Purification and characterization of human brain aldose reductase, Eur. J. Biochem. 127: 279–284

    Article  Google Scholar 

  • Wilson, D.K., Bohren, K.M., Gabbay, K.H., and Quiocho, F.A., 1992, An unlikely sugar substrate site in the 1.65 Å structure of the human aldose reductase holoenzyme implicated in diabetic complications, Science 257: 81–84

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bohren, K.M., Gabbay, K.H. (1993). CYS298 is Responsible for Reversible Thiol-Induced Variation in Aldose Reductase Activity. In: Weiner, H., Crabb, D.W., Flynn, T.G. (eds) Enzymology and Molecular Biology of Carbonyl Metabolism 4. Advances in Experimental Medicine and Biology, vol 328. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2904-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2904-0_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6259-3

  • Online ISBN: 978-1-4615-2904-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics