Skip to main content

Part of the book series: Human Nutrition ((HUNU))

Abstract

Arginine is a semiessential dibasic amino acid. It is an essential component of the urea cycle (Fig. 1) and is converted by the enzyme arginase into ornithine and urea (Ratner, 1973) (Fig. 2). By virtue of its position in the urea cycle (Fig. 1), arginine is required for ammonia detoxification and is therefore involved in the intermediary metabolism of other amino acids. A major source of endogenous arginine is derived from the conversion of citrulline to arginine by the kidney (Windmueller and Spaeth, 1981). Hepatic arginase activity is usually very high, so that hepatic arginine levels are low and the liver does not contribute significantly to the maintenance of plasma arginine levels. Arginine is normally present in the Western diet as approximately 5% of dietary protein such that an individual ingesting 100 g of protein will receive 31 mmole (5.4 g) of arginine (Visek, 1986). The normal plasma arginine concentration is O.05 mM and supplementation with amounts of up to 25 g of arginine results in plasmal levels of O.2 to O.3 mM. Arginine is absorbed in the gastrointestinal tract by an active transport mechanism which is both substrate specific and sodium dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barbul, A., 1990, Arginine and immune function, Nutrition 6: 53–58.

    CAS  Google Scholar 

  • Barbul, A., Wasserkrug, H. L., Sisto, D. A., et al., 1980a, Thymic and immune stimulatory actions of arginine, J. Parent. Ent. Nutr. 4: 446–449.

    Article  CAS  Google Scholar 

  • Barbul, A., Wasserkrug, H. L., Seifter, E., et al., 1980b, Immunostimulatory effects of arginine in normal and injured rats, J. Surg. Res. 29: 228–235.

    Article  CAS  Google Scholar 

  • Barbul, A., Sisto, D. A., Wasserkrug, H. L., et al., 1981, Arginine stimulates lymphocyte immune response in healthy humans, Surgery 90: 244.

    CAS  Google Scholar 

  • Billiar, T. R., Curran, R. D., Stuehr, D. J., West, M. A., Ferrari, F. K., and Simmons, R. L., 1989, Evidence that the activation of Kupffer cells results in the production of L-arginine metabolites that release cell-associated iron and inhibit hepatocyte protein synthesis, Surgery 106: 364.

    CAS  Google Scholar 

  • Cerra, F. B., Holman, R. T., Bankey, P. E., Mazuski, J. F., and Li Cari, J. J., 1991, Omega 3 polyunsaturated fatty acids as modulators of cellular function in the critically ill, Pharmacotherapy 11: 71–76.

    CAS  Google Scholar 

  • Chisari, F. V., Nakamura, M., Milich, D. R., et al., 1985, Production of two distinct and independent hepatic immunoregulatory molecules by the perfused rat liver, Hepatology 5: 735–743.

    Article  CAS  Google Scholar 

  • Choo-Chung, Y. S., Clair, T., Bodwin, J. S., et al., 1980, Arrest of mammary tumor growth in vivo by Larginine: Stimulation of NAD-dependent activation of adenylate cyclase, Biochem. Biophys. Res. Commun. 95: 1306–1313.

    Article  Google Scholar 

  • Curran, R. D., Billiar, T. R., Stuehr, D. J., et al., 1992, Multiple cytokines are required to induce hepatic nitric oxide production and inhibit total protein synthesis, Ann. Surg. in press.

    Google Scholar 

  • Daly, J. M., Reynolds, J. V., Thorn, A. K., et al., 1988a, Immune and metabolic effects of arginine in surgical patients, Ann. Surg. 208: 512.

    Article  CAS  Google Scholar 

  • Daly, J. M., Reynolds, J. V., Thorn, A., Kinsley, L., Dietrick-Gallagher, M., Shou, J., and Ruggeri, B., 1988b, Immune and metabolic effects of arginine in the surgical patient, Ann. Surg. 208: 512–523.

    Article  CAS  Google Scholar 

  • Drapier, J. C., and Hibbs, J. B., Jr., 1986, Murine cytotoxic activated macrophages inhibit aconitase in tumor cells, J. Clin. Invest. 78: 790.

    Article  CAS  Google Scholar 

  • Drapier, J. C., and Hibbs, J. B., Jr., 1988, Differentiation of murine macrophages to express nonspecific cytotoxicity for tumor cells results in L-arginine-dependent inhibition of mitochondrial iron-sulfur enzymes in the macrophage effector cells, J. Immunol. 140: 2829.

    CAS  Google Scholar 

  • Droge, W., 1986, Protein kinase C in T cell regulation, Immunol. Today 7: 340–343.

    Article  Google Scholar 

  • Droge, W., Benninghoff, B., and Lehman, V., 1987, Tumor necrosis factor augments the immunogenicity and the production of L-ornithine by peritoneal macrophages, Lymphokine Res. 92: 359–365.

    Google Scholar 

  • Eagle, H., 1959, Amino acid metabolism in mammalian cell cultures, Science 130: 432–437.

    Article  CAS  Google Scholar 

  • Gottschlich, M., Jenkins, M., Warden, G., Boumer, T., Havens, P., Snook, J., and Alexander, J. W., 1990, Differential effects of three enterai dietary regimens on selected outcome variables in burn patients, J. Parent. Ent. Nutr. 14: 225–236.

    Article  CAS  Google Scholar 

  • Granger, D., and Lehninger, L., 1982, Site of inhibition of mitochondrial electron transport in macrophage-injured neoplastic cells, J. Cell Biol. 95: 527.

    Article  CAS  Google Scholar 

  • Granger, D., Taintor, R., Cook, J., and Hibbs, J. B., Jr., 1980, Injury of neoplastic cells by murine macrophages leads to inhibition of mitochondrial respiration, J. Clin. Invest. 65: 357–370.

    Article  CAS  Google Scholar 

  • Granger, D. L., Hibbs, J. B., Perfect, J. R., and Durack, D. T., 1988, Specific amino acid (L-arginine) requirement for the microbiostatic activity of murine macrophages, J. Clin. Invest. 81: 1129–1136.

    Article  CAS  Google Scholar 

  • Hacker-Shahin, B., and Droge, W., 1986, Putrescine and its biosynthetic precursor L-ornithine augment the in vivo immunization against major histocompatibility antigens and syngeneic tumor cells, Cell. Immunol. 99: 434–443.

    Article  CAS  Google Scholar 

  • Hibbs, J. B., Jr., Vavrin, Z., and Taintor, R. R., 1987, L-Arginine is required for expression of the activated macrophage effector mechanisms causing selective metabolic inhibition in target cells, J. Immunol. 138: 550–565.

    CAS  Google Scholar 

  • Ignarro, L. J., Buga, G. M., Wood, K. S., et al., 1987, Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide, Proc. Natl. Acad. Sci. USA 84: 9265–9269.

    Article  CAS  Google Scholar 

  • Kaplan, S. S., Billiar, T. R., Curran, R. D., Zdziarski, U. E., Simmons, R. L., and Baseford, R. E., 1989, Inhibition of neutrophil chemotaxis with NG monomethyl-L-arginine: A role for cyclic GMP, Blood 74: 1885–1887.

    CAS  Google Scholar 

  • Keller, R., 1973, Cytostatic elimination of syngeneic rat tumor cells in vitro by nonspecifically activated macrophages, J. Exp. Med. 138: 2366–2371.

    Article  Google Scholar 

  • Keller, R., Geiges, M., and Keist, R., 1990, L-Arginine-dependent reactive nitrogen intermediates as mediators of tumor cell killing by activated macrophages, Cancer Res. 50: 1421–1425.

    CAS  Google Scholar 

  • Knowles, R. G., Palacios, M., Palmer, R. M. J., et al., 1989, Formation of nitric oxide from L-arginine in the central nervous system: A transduction mechanism for stimulation of the soluble guanylate cyclase, Proc. Natl. Acad. Sci. USA 86: 5159–5162.

    Article  CAS  Google Scholar 

  • Merimee, T. J., Lillicrap, D. A., and Rabinowitz, D., 1965, Effect of arginine on serum levels of human growth hormone, Lancet 2: 668–670.

    Article  CAS  Google Scholar 

  • Milner, J. A., and Stepanovitch, L. V., 1979, Inhibitory effects of dietary arginine on growth of Ehrlich ascites tumor cells in mice, J. Nutr. 109: 489–494.

    CAS  Google Scholar 

  • Moss, J., and Vaughan, M., 1977, Mechanism of action of choleragen: Evidence for ADP-ribosyltransferase activity with arginine as an acceptor, J. Biol. Chem. 252: 2455–2465.

    CAS  Google Scholar 

  • Palmer, J. P., Walter, R. M., and Ensick, J. W., 1975, Arginine-stimulated acute phase of insulin and glucagon secretion. I. In normal man, Diabetes 24: 735–740.

    Article  CAS  Google Scholar 

  • Rakoff, J. S., Siver, T. M., Sinha, Y. M., et al., 1973, Prolactin and growth hormone release in response to sequential stimulation by arginine and TRF, J. Clin. Endocrinol. Metab. 37: 641–644.

    Article  CAS  Google Scholar 

  • Ratner, S., 1973, Enzymes of arginine and urea synthesis, Adv. Enzymol. 39: 1–90.

    CAS  Google Scholar 

  • Rettura, G., Padawer, J., Barbul, A., et al., 1979, Supplemental arginine increases thymic cellularity in normal and murine sarcoma virus-inoculated mice and increases the resistance of mice to the murine sarcoma virus tumor, J. Parent. Ent. Nutr. 3: 409–416.

    Article  CAS  Google Scholar 

  • Rettura, G., Levenson, S. M., Barbul, A., et al., 1981, Supplemental arginine and ornithine promote allograft rejection, 183rd Meet. Am. Chem. Soc. AGFD Abstract 11.

    Google Scholar 

  • Rettura, G., Stratford, F., Levenson, S. M., et al., 1983, Improved wound-healing, anticachectic and thymotrophic effects of supplemental ornithine, 17 th Mid-Atlantic Reg. Meet. Am. Chem. Soc. Abstract 15.

    Google Scholar 

  • Reynolds, J. V., Thorn, A. K., Ziegler, M., et al., 1987, Arginine, protein calorie malnutrition and cancer, J. Surg. Res. 45: 513.

    Article  Google Scholar 

  • Reynolds, J. V., Zhang, S. M., Thorn, A. K., et al., 1988, Arginine as an immunomodulator, Surg. Forum 38: 415.

    Google Scholar 

  • Saito, H., Trochi, O., Wang, S., et al., 1987, Metabolic and immune effects of dietary arginine supplementation after burn, Arch. Surg. 122: 784–789.

    Article  CAS  Google Scholar 

  • Susskind, B. M., and Chandrasekaran, J., 1987, Inhibition of cytolytic T lymphocyte maturation with ornithine, arginine and putrescine, J. Immunol. 139: 905–912.

    CAS  Google Scholar 

  • Tachibana, K., Mukai, K., Hiraoka, I., et al., 1985, Evaluation of the effect of arginine-enriched amino acid solution on tumor growth, J. Parent. Ent. Nutr. 9: 428–434.

    Article  CAS  Google Scholar 

  • Visek, W. J., 1986, Arginine needs, physiological states and usual diets. A reevaluation, J. Nutr. 116: 36–46.

    CAS  Google Scholar 

  • Windmueller, H. G., and Spaeth, A. E., 1981, Source and fate of circulating citrulline, Am. J. Physiol. 241: 473–480.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Redmond, H.P., Daly, J.M. (1993). Arginine. In: Klurfeld, D.M. (eds) Nutrition and Immunology. Human Nutrition. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2900-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2900-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6257-9

  • Online ISBN: 978-1-4615-2900-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics