Skip to main content

Genetics of Translation Initiation Factors in Saccharomyces cerevisiae

  • Chapter
Translational Regulation of Gene Expression 2
  • 64 Accesses

Abstract

The first genetic mutant affecting the translation initiation process of the yeast Saccharomyces cerevisiae was isolated almost 25 years ago as a temperature-sensitive mutant. But it was not until recent years that genetic analysis in yeast proved worthy as an effective approach to study the mechanism of eukaryotic translation. As a result of these recent genetic studies, yeast is now accepted as a eukaryotic organism with a similar mechanism for initiating translation as observed in mammalian cells. The similarities between the mammalian and yeast initiation processes, now well established, enables us to assess the mechanism of initiation by combining both biochemical and genetic data, a very powerful means to dissect the eukaryotic translation machinery. The ability to do genetics provides additional dimensions to the analysis of translation initiation. As discussed below, it affords direct selection for suppressor mutations in genes which encode factors. These suppressor genes help to define those factors that function at particular steps in the initiation pathway. This has always been one of the rate-limiting problems associated with the biochemical analysis of translation initiation, as the complexity of the process was not compatible, in many cases, with developing specific assays for factors at defined steps in the pathway. Genetic suppressor analysis can also be a very sensitive method for detecting factor function. It has the potential to define new factors that may not be realizable by biochemical approaches, especially if these factors are not abundant proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steward, J. W., Sherman, F., and Schweingruber, A. M., 1971, Identification and mutational relocation of the AUG codon initiating translation of iso-1-cytochrome c in yeast, J. Biol. Chem. 246:7429–7445.

    Google Scholar 

  2. Sherman, F., Steward, J. W., and Schweingruber, A. M., 1980, Mutants of yeast initiating translation of iso-1-cytocrome c within a region spanning 37 nucleotides, Cell 20:215–222.

    Article  PubMed  CAS  Google Scholar 

  3. Kozak, M., 1978, How do eukaryotic ribosomes select initiation regions in messenger RNA? Cell 15:1109–1123.

    Article  PubMed  CAS  Google Scholar 

  4. Donahue, T. F., and Cigan, A. M., 1988, Genetic selection for mutations that reduce or abolish ribosomal recognition of the HIS4 translational initiator region, Mol. Cell. Biol. 8:2955–2963.

    PubMed  CAS  Google Scholar 

  5. Kozak, M., 1986, Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes, Cell 44:283–292.

    Article  PubMed  CAS  Google Scholar 

  6. Cigan, A. M., and Donahue, T. F., 1987, Sequence and structural features associated with translational initiator regions in yeast-A review, Gene 59:1–18.

    Article  PubMed  CAS  Google Scholar 

  7. Cigan, A. M, Pabich, E. K., and Donahue, T. F., 1988, Mutational analysis of the HIS4 translational initiator region in Saccharomyces cerevisiae, Mol. Cell. Biol. 8:2964–2975.

    PubMed  CAS  Google Scholar 

  8. Bairn, J. B., and Sherman, F., 1988, mRNA structures influencing translation in the yeast Saccharomyces cerevisiae, Mol. Cell. Biol. 8:1591–1601.

    Google Scholar 

  9. Raué, H. A., van den Heuvel, J. J., and Planta, R. J., 1990, Yeast mRNA structure and translational efficiency, in: Posttranscriptional Control of Gene Expression (J. E. G. McCarthy and M. F. Tuite, eds.), pp. 237–247, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  10. Kozak, M., 1991, Structural features in eukaryotic mRNAs that modulate the initiation of translation, J. Biol. Chem. 266:19867–19870.

    PubMed  CAS  Google Scholar 

  11. Pelletier, J., and Sonenberg, N., 1985, Insertion mutagenesis to increase secondary structure within the 5′ noncoding region of a eukaryotic mRNA reduces translational efficiency, Cell 40: 515–526.

    Article  PubMed  CAS  Google Scholar 

  12. Kozak, M., 1986, Influences of mRNA secondary structure on initiation by eukaryotic ribosomes, Proc. Natl. Acad. Sci. USA 83:2850–2854.

    Article  PubMed  CAS  Google Scholar 

  13. Rhoads, R. E., 1988, Cap recognition and the entry of mRNA into the protein synthesis initiation cycle, Trends Biochem. Sci. 13:52–56.

    Article  PubMed  CAS  Google Scholar 

  14. Trachsel, H. (ed.) 1990, Translation in Eukaryotes ,CRC Press, Caldwell, New Jersey.

    Google Scholar 

  15. Hershey, J. W. B., 1991, Translational control in mammalian cells, Annu. Rev. Biochem. 60: 717–755.

    Article  PubMed  CAS  Google Scholar 

  16. Sonenberg, N., 1991, Picornavirus RNA translation continues to surprise, Trends Genet. 7: 105–106.

    Article  PubMed  CAS  Google Scholar 

  17. Meerovitch, K., Pelletier, J., and Sonenberg, N., 1989, A cellular protein that binds to the 5′-noncoding region of poliovirus RNA, Genes Dev. 3:1029–1034.

    Article  Google Scholar 

  18. Jang, S.-K., and Wimmer, E., 1990, Cap-independent translation of encephalmyocarditic virus RNA, Genes Dev. 4:1560–1572.

    Article  PubMed  CAS  Google Scholar 

  19. Altman, M., Edery, I., Sonenberg, N., and Trachsel, H., 1985, Purification and characterization of protein synthesis initiation factor eIF-4E from the yeast Saccharomyces cerevisiae, Biochemistry 24:6085–6089.

    Article  Google Scholar 

  20. Altman, M., Handschin, C., and Trachsel, H., 1987, mRNA cap-binding protein: Cloning of the gene encoding protein synthesis initiation factor eIF-4E from Saccharomyces cerevisiae, Mol. Cell. Biol. 7:998–1003.

    Google Scholar 

  21. Altman, M., Müller, P. P., Pelletier, J., Sonenberg, N., and Trachsel, H., 1989, A mammalian translation initiation factor can substitute for its yeast homologue in vivo, J. Biol. Chem. 264: 12145–12147.

    Google Scholar 

  22. Altman, M., Sonenberg, N., and Trachsel, H., 1989, Translation in Saccharomyces cerevisiae: Initiation factor 4E-dependent cell-free system, Mol. Cell. Biol. 9:4467–4472.

    Google Scholar 

  23. Brenner, C., Nakayama, N., Goebl, M., Tanaka, K., Toh, E., and Matsumoto, A., 1988, CDC33 encodes mRNA cap-binding protein eIF-4E of Saccharomyces cerevisiae, Mol. Cell. Biol. 8: 3556–3559.

    PubMed  CAS  Google Scholar 

  24. Reed, S. I., 1980, The selection of S. cerevisiae mutants defective in the start event of cell cycle, Genetics 95:561–577.

    PubMed  CAS  Google Scholar 

  25. Altman, M., and Trachsel, H., 1989, Altered mRNA cap recognition activity of initiation factor 4E in the yeast cell cycle division mutant cdc33, Nucleic Acids Res. 17:5923–5931.

    Article  Google Scholar 

  26. Hershey, J. W. B., 1989, Protein phosphorylation controls translation rates, J. Biol. Chem. 264: 20823–20826.

    PubMed  CAS  Google Scholar 

  27. Linder, P., and Slonimski, P., 1989, An essential yeast protein encoded by duplicated genes TIF1 and TIF2 and homologous to the mammalian translation initiation factor eIF-4A, can suppress a mitochondrial missense mutation, Proc. Natl. Acad. Sci. USA 86:2286–2290.

    Article  PubMed  CAS  Google Scholar 

  28. Kruszewska, A., and Szczesniak, B., 1985, Functional nuclear suppressor of mitochondrial oxi2 mutation in yeast, Curr. Genet. 10:87–93.

    Article  PubMed  CAS  Google Scholar 

  29. Costanzo, M. C., and Fox, T. D., 1990, Control of mitochondrial gene expression in Saccharomyces cerevisiae, Annu. Rev. Genet. 24:91–113.

    Article  PubMed  CAS  Google Scholar 

  30. Linder, P., and Slonimski, P. P., 1988, Sequence of the genes TIF1 and TIF2 from Saccharomyces cerevisiae coding for a translation initiation factor, Nucleic Acids Res. 16:10359.

    Article  PubMed  CAS  Google Scholar 

  31. Prat, A., Schmid, S. R., Buser, P., Blum, S., Trachsel, H., Nielson, P. J., and Linder, P., 1990, Expression of translational initiation factor 4A from yeast and mouse in Saccharomyces cerevisiae, Biochim. Biophys. Acta 1050:140–145.

    Article  PubMed  CAS  Google Scholar 

  32. Blum, S., Mueller, M., Schmid, S. R., Linder, P., and Trachsel, H., 1989, Translation in Saccharomyces cerevisiae initiation factor 4A-dependent cell-free system, Proc. Natl. Acad. Sci. USA 86:6043–6046.

    Article  PubMed  CAS  Google Scholar 

  33. Jaramillo, M., Browning, K., Dever, T. E., Blum, S., Trachsel, H., Merrick, W. C., Ravel, J. M., and Sonenberg, N., 1990, Translation initiation factors that function as RNA helicases from mammals, plants and yeast, Biochim. Biophys. Acta 1050:134-139.

    Article  PubMed  CAS  Google Scholar 

  34. Schmid, S. R., and Linder, P., 1991, Translation initiation factor 4A from Saccharomyces cerevisiae: Analysis of residues conserved in the D-E-A-E family of RNA helicases, Mol. Cell. Biol. 11:3463–3471.

    PubMed  CAS  Google Scholar 

  35. Hartwell, L., 1967, Macromolecule synthesis in temperature-sensitive mutants of yeast, J. Bacteriol. 93:1662–1670.

    PubMed  CAS  Google Scholar 

  36. Moldave, K., and McLaughlin, C. S., 1988, The analysis of temperature-sensitive mutants of Saccharomyces cerevisiae altered in components required for protein synthesis, in: Genetics of Translation (M. F. Tuite ed.), pp. 271–281, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  37. Hanis-Joyce, P. J., Singer, R. A., and Johnston, G. C., 1987, Molecular characterization of the yeast PRT1 gene in which mutations affect translation initiation and regulation of cell proliferation, J. Biol. Chem. 262:2845–2851.

    Google Scholar 

  38. Hanis-Joyce, P. J., 1985, Mapping CDC mutations in the yeast S. cerevisiae by RAD52-mediated chromosome loss, Genetics 110:591–607.

    Google Scholar 

  39. Hanis-Joyce, P. J., Johnston, G. C., and Singer, R. A., 1987, Regulated arrest of cell proliferation mediated by yeast prtl mutations, Exp. Cell Res. 72:134–145.

    Article  Google Scholar 

  40. Altman, M., Blum, S., Wilson, T. A. W., and Trachsel, H., 1990, The 5′ leader sequence of tobacco mosaic virus RNA mediates initiation factor 4E-independent, but still initiation factor 4A-dependent, translation in yeast extracts, Gene 91:127–129.

    Article  Google Scholar 

  41. Altman, M., Blum, S., Pelletier, J., Sonenberg, N., Wilson, T. A. W., and Trachsel, H., 1990, Translation initiation factor-dependent extracts from Saccharomyces cerevisiae, Biochim. Biophys. Acta 1050:155–159.

    Article  Google Scholar 

  42. Rozen, F., Edery, I., Meerovitch, K., Dever, T. E., Merrick, W. C., and Sonenberg, N., 1990, Bidirectional RNA helicase activity of eukaryotic translation initiation factors 4A and 4F, Mol. Cell. Biol. 10:1134–1144.

    PubMed  CAS  Google Scholar 

  43. Yoon, H., Miller, S. P., Pabich, E. K., and Donahue, T. F., 1992, SSL1, a suppressor of a HIS4 5′-UTR stem-loop mutation, is essential for translation initiation initiation and affects UV resistance in yeast, Genes Dev. 6:2463–2477.

    Article  PubMed  CAS  Google Scholar 

  44. Gulyas, K. G., and Donahue, T. F., 1992, A suppressor of a stem-loop mutation in the HIS-4 leader encodes the yeast homolog of human ERCC-3, Cell 69:1031–1042.

    Article  PubMed  CAS  Google Scholar 

  45. Milburn, S. C., Hershey, J. W. B., Davies, M. V, Kelleher, K., and Kaufman, R. J., 1990, Cloning and expression of eukaryotic initiation factor 4B cDNA: Sequence determination identifies a common RNA recognition motif, EMBO J. 9:2783–2790.

    PubMed  CAS  Google Scholar 

  46. Cigan, A. M., Feng, L., and Donahue, T. F., 1988, tRNAimet functions in directing the scanning ribosome to the start site of translation, Science 242:93–97.

    Article  PubMed  CAS  Google Scholar 

  47. Schulman, L. H., and Pelka, H., 1984, Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAmet and E. coli methionyl-tRNA synthetase, Fed. Proc. 43:2977–2980.

    PubMed  CAS  Google Scholar 

  48. Castilho-Valanicias, B., Yoon, H., and Donahue, T. F., 1990, Genetic characterization of the Saccharomyces cerevisiae translation initiation suppressors sui1, sui2 and SUI3 and their effects on His4 expression, Genetics 24:483–495.

    Google Scholar 

  49. Cigan, A. M., Pabich, E. K., Feng, L., and Donahue, T. F., 1989, Yeast translation initiation suppressor sui2 encodes the a subunit of eukaryotic translation initiation factor 2 and shares sequence identity with the human a subunit, Proc. Natl. Acad. Sci. USA 86:2784–2788.

    Article  PubMed  CAS  Google Scholar 

  50. Ernst, H., Duncan, R. F., and Hershey, J. W. B., 1987, Cloning and sequencing of complementary DNAs encoding the a subunit of translational initiation factor eIF-2, J. Biol. Chem. 262:1206–1212.

    PubMed  CAS  Google Scholar 

  51. Donahue, T. F., Cigan, A. M., Pabich, E. K., and Valavicius, B., 1988, Mutations at aZn(II) finger motif in the yeast eIF-2ß gene alter ribosomal start site selection during the scanning process, Cell 54:621–632.

    Article  PubMed  CAS  Google Scholar 

  52. Pathak, V. K., Nielson, P., Trachsel, H., and Hershey, J. W. B., 1988, Structure of the ß subunit of translation initiation factor eIF-2, Cell 54:633–639.

    Article  PubMed  CAS  Google Scholar 

  53. Yoon, H., and Donahue, T. F., 1992, The sui1 suppressor locus in Saccharomyces cerevisiae encodes a translation factor that functions during tRNAjmet recognition of the start codon, Mol. Cell. Biol. 12:248–260.

    PubMed  CAS  Google Scholar 

  54. Hampsey, M., Na, J. G., Pinto, I., Ware, D. E., and Berroteran, R. W., 1991, Extragenic suppressors of a translation initiation defect in the cyc1 gene of Saccharomyces cerevisiae, Biochimie 73:1445–1455.

    Article  PubMed  CAS  Google Scholar 

  55. Pinto, I., Ware, D. E., and Hampsey, M., 1992, The yeast SUA7 gene encodes a homologue of human transcription factor TFIIB and is required for normal start site selection in vivo, Cell 68: 977–988.

    Article  PubMed  CAS  Google Scholar 

  56. Hinnebusch, A. G., 1988, Mechanisms of gene regulation in the general control of amino acid biosynthesis in yeast Saccharomyces cerevisiae, Microbiol. Rev. 52:248–273.

    PubMed  CAS  Google Scholar 

  57. Hinnebusch, A. G, 1990, Involvement of an initiation factor and protein phosphorylation in translational control of GCN4 mRNA, Trends Biochem. Sci. 15:148–152.

    Article  PubMed  CAS  Google Scholar 

  58. Abastado, J., Miller, P. F., Jackson, B. M., and Hinnebusch, A. G., 1991, Suppression of ribosomal reinitiation at upstream open reading frames of amino acid-starved cells forms the basis for GCN4 translational control, Mol. Cell. Biol. 11:486–496.

    PubMed  CAS  Google Scholar 

  59. Cigan, A. M., Foiani, M., Hannig, E. M., and Hinnebusch, A. G., 1991, Complex formation by positive and negative translational regulators of GCN4, Mol. Cell. Biol. 11:3217–3228.

    PubMed  CAS  Google Scholar 

  60. Williams, N. P., Hinnebusch, A. G., and Donahue, T. F., 1989, Mutations in the structural genes for eukaryotic translation initiation factors 2α and 2ß of Saccharomyces cerevisiae disrupt translational control of GCN4 mRNA, Proc. Natl. Acad. Sci. USA 86:7515–7519.

    Article  PubMed  CAS  Google Scholar 

  61. Wek, R., and Hinnebusch, A. G., 1989, Juxtaposition of domains homologous to protein kinases and histidyl-tRNA synthetase in GCN2 protein suggests a mechanism of coupling GCN4 expression to amino acid availability, Proc. Natl. Acad. Sci. USA 86:4579–4583.

    Article  PubMed  CAS  Google Scholar 

  62. Chen, J.-J., Throop, M. S., Gehrke, L., Kuo, I., Pal, J. K., Brodsky, M., and London, I. M., 1991, Cloning of the cDNA of the heme-regulated eukaryotic initiation factor 2α (eIF-2α) kinase of rabbit reticulocyte: Homology to yeast GCN2 protein kinase and human double-stranded RNA-dependent eIF-2α kinase, Proc. Natl. Acad. Sci. USA 88:7729–7733.

    Article  PubMed  CAS  Google Scholar 

  63. Meur, E., Chong, K., Galabra, J., Thomas, N.S. B., Kerr, I. M., Williams, B. R. G., and Hovanessian, A. G., 1990, Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon, Cell 62:379–390.

    Article  Google Scholar 

  64. Ramirez, M., Wek, R., and Hinnebusch, A. G., 1991, Ribosome-association of GCN2 protein kinase, a translational activator of the GCN4 gene of Saccharomyces cerevisiae, Mol. Cell. Biol. 11:3027–3036.

    PubMed  CAS  Google Scholar 

  65. Dever, T. E., Feng, L., Cigan, A. M., Wek, R., Donahue, T. F., and Hinnebusch, A. G., 1992, Phosphorylation of initiation factor 2α by protein kinase Gcn2 mediates gene specific translational control of GCN4 in yeast, Cell 68:585–596.

    Article  PubMed  CAS  Google Scholar 

  66. Chong, K., Feng, L., Schappent, K., Meurs, E., Donahue, T. F., Frieson, J. D., Hovanessian, A. G., and Williams, B. R. G., 1992, Human p68 kinase exhibits growth suppression in yeast and homology to the translational regulator Gcn2, EMBO J. 11:1153–1562.

    Google Scholar 

  67. Schneir, J., Schwelberger, H. G., Smit-McBride, Z., Kang, H. A., and Hershey, J. W. B., 1991, Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae, Mol. Cell. Biol. 11:3105–3114.

    Google Scholar 

  68. Mehta, K., Leung, D., Lafenure, L., and Smith, M., 1990, The ANB1 locus of Saccharomyces cerevisiae encodes the protein synthesis initiation factor eIF-4D, J. Biol. Chem. 265:8802–8807.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Feng, L., Donahue, T.F. (1993). Genetics of Translation Initiation Factors in Saccharomyces cerevisiae . In: Ilan, J. (eds) Translational Regulation of Gene Expression 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2894-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2894-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6254-8

  • Online ISBN: 978-1-4615-2894-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics