Skip to main content

Role of Elongation Factors in Steering the Ribosomal Elongation Cycle

  • Chapter

Abstract

The detection and characterization of the third transfer RNA (tRNA)-binding site on the ribosome, the E site, in addition to the classical A and P sites has led to the allosteric three-site model (ref. 1 and references therein), which has provided fresh impetus for discussion of and insights into the ribosomal elongation mechanism. It allows, for example, for the first time the identification of a common inhibition mechanism for aminoglycoside antibiotics,2 which do not exert their antibiotic activity by inducing misreading3 as previously assumed. The implications of the allosteric three-site model for the selection of the correct aminoacyl-tRNA and for the role of the elongation factors will be surveyed here. We start with a brief description of the main features of the allosteric three-site model, then address the problem of recognition involved in the selection of cognate aminoacyl-tRNAs and describe a surprising solution to this problem, which might be related to such fundamental structural features as the two-subunit nature of all ribosomes. We close the chapter with a first attempt to describe the mechanism of both elongation factors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gnirke, A., Geigenmüller, U., Rheinberger, H.-J., and Nierhaus, K. H., 1989, The allosteric three-site model for the ribosomal elongation cycle: Analysis with a heteropolymeric mRNA, J. Biol. Chem. 264:7291–7301.

    PubMed  CAS  Google Scholar 

  2. Hausner, T.-P., Geigenmüller, U., and Nierhaus, K. H., 1988, The allosteric three-site model for the ribosomal elongation cycle: New insights into the inhibition mechanisms of aminoglycosides, thiostrepton, and viomycin, J. Biol. Chem. 263:13103–13111.

    PubMed  CAS  Google Scholar 

  3. Fast, R., Eberhard, T. H., Ruusala, R., and Kurland, C. G., 1987, Does streptomycin cause an error catastrophe? Biochimie 69:131–136.

    Article  PubMed  CAS  Google Scholar 

  4. Nierhaus, K. H., 1990, The allosteric three-site model for the ribosomal elongation cycle: Features and future, Biochemistry 29:4997–5008.

    Article  PubMed  CAS  Google Scholar 

  5. Rheinberger, H.-J., and Nierhaus, K. H., 1986, Allosteric interactions between the ribosomal transfer RNA-binding sites A and E, J. Biol. Chem. 261:9133–9139.

    PubMed  CAS  Google Scholar 

  6. Rheinberger, H.-J., Sternbach, H., and Nierhaus, K. H., 1986, Codon-anticodon interaction at the ribosomal E site, J. Biol. Chem. 261:9140–9143.

    PubMed  CAS  Google Scholar 

  7. Rheinberger, H.-J., and Nierhaus, K. H., 1986, Adjacent codon-anticodon interactions of both tRNAs present at the ribosomal A and P or P and E sites, FEBS Lett. 204:97–99.

    Article  PubMed  CAS  Google Scholar 

  8. Wurmbach, P., and Nierhaus, K. H., 1979, Codon-anticodon interaction at the ribosomal P (peptidyl-tRNA) site, Proc. Natl. Acad. Sci. USA 76:2143–2147.

    Article  PubMed  CAS  Google Scholar 

  9. Lührmann, R., Eckhard, H., and Stöffler, G., 1979, Codon-anticodon interaction at the ribosomal peptidyl site, Nature 280:423–425.

    Article  PubMed  Google Scholar 

  10. Peters, M., and Yarus, M., 1979, Transfer RNA selection at the ribosomal A and P sites, J. Mol. Biol. 134:471–491.

    Article  PubMed  CAS  Google Scholar 

  11. Geigenmüller, U., and Nierhaus, K. H., 1990, Significance of the third tRNA binding site, the E site, on E. coli ribosomes for the accuracy of translation: An occupied E site prevents the binding of non-cognate aminoacyl-tRNA to the A site, EMBO J. 9:4527–4533.

    PubMed  Google Scholar 

  12. Schilling-Bartetzko, S., Bartetzko, A., and Nierhaus, K. H., 1992, Kinetic and thermodynamic parameters for tRNA binding to the ribosome and for the translocation reaction, J. Biol. Chem. 267:4703–4712.

    PubMed  CAS  Google Scholar 

  13. Moazed, D., and Noller, H. F., 1989, Intermediate states in the movement of transfer RNA in the ribosome, Nature 342:142–148.

    Article  PubMed  CAS  Google Scholar 

  14. Rheinberger, H.-J., and Nierhaus, K. H., 1987, The ribosomal E site at low Mg2+: Coordinate inactivation of ribosomal functions at Mg2+ concentrations below 10 mM and its prevention by polyamines, J. Biomol. Struct. Dynam. 5:435–446.

    Article  CAS  Google Scholar 

  15. Quigley, G. J., Wang, A. H. J., Seeman, N. C., Suddath, F. L., Rich, A., Sussman, J. L., and Kim, S. H., 1975, Hydrogen bonding in yeast phenylalanine transfer RNA, Proc. Natl. Acad. Sci. USA 72:4866–4870.

    Article  PubMed  CAS  Google Scholar 

  16. Schilling-Bartetzko, S., Franceschi, F. J., and Nierhaus, K. H., 1992, Apparent association constants of tRNAs for the ribosomal A, P and E sites, J. Biol. Chem. 267:4633–4702.

    Google Scholar 

  17. Komine, Y., Adachi, T., Inokuchi, H., and Ozeki, H., 1990, Genomic organization and physical mapping of the transfer RNA genes in Escherichia coli K12, J. Mol. Biol. 212:579–598.

    Article  PubMed  CAS  Google Scholar 

  18. Potapov, A. P., 1982, A stereospecific mechanism for the aminoacyl-tRNA selection at the ribosome, FEBS Lett. 146:5–8.

    Article  PubMed  CAS  Google Scholar 

  19. Andersson, S. G. E., Buckingham, R. H., and Kurland, C. G., 1984, Does codon composition influence ribosome function? EMBO J. 3:91–94.

    PubMed  CAS  Google Scholar 

  20. Kurland, C. G., 1980, On the accuracy of elongation, in: Ribosomes (G. Chambliss, G. R. Craven, J. Davies, K. Davis, L. Kahan, and M. Nomura, eds.), pp. 597–614, University Park Press, Baltimore.

    Google Scholar 

  21. Hopfield, J. J., and Yamane, T., 1980, The fidelity of protein synthesis, in: Ribosomes (G. Chambliss, G. R. Craven, J. Davies, K. Davis, L. Kahan, and M. Nomura, eds.), pp. 585–596, University Park Press, Baltimore.

    Google Scholar 

  22. Nierhaus, K. H., 1982, Structure, assembly, and function of ribosomes, in: Current Topics in Microbiology and Immunology ,Volume 97 (W. Henle, P. H. HofSchneider, H. Koprowski, F. Melchers, R. Rott, H. G. Schweiger, and P. K. Vogt, eds.), pp. 81–155, Spinger-Verlag, Berlin.

    Chapter  Google Scholar 

  23. Gnirke, A., and Nierhaus, K. H., 1986, tRNA binding sites on the subunits of Escherichia coli ribosomes, J. Biol. Chem. 261:14506–14514.

    PubMed  CAS  Google Scholar 

  24. Endo, Y., and Wool, I. G., 1982, The site of action of α-sarcin on eukaryotic ribosomes: The sequence at the α-sarcin cleavage site in 28S ribosomal ribonucleic acid, J. Biol. Chem. 257: 9054–9060.

    PubMed  CAS  Google Scholar 

  25. Hausner, T.-P., Atmadja, J., and Nierhaus, K. H., 1987, Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors, Biochimie 69:911–923.

    Article  PubMed  CAS  Google Scholar 

  26. Wool, I. G., 1984, The mechanism of action of the cytotoxic nuclease α-sarcin and its use to analyse ribosome structure, Trends Biochem. Sci. 9:14–17.

    Article  CAS  Google Scholar 

  27. Endo, Y., Huber, P. W., and Wool, I. G., 1983, The nuclease activity of the cytotoxin α-sarcin: The characteristics of the enzymatic activity of α-sarcin with ribosomes and ribonucleic acids as substrates, J. Biol. Chem. 258:2662–2667.

    PubMed  CAS  Google Scholar 

  28. Miller, D. L., 1972, Elongation factors EF-Tu and EF-G interact at related sites on ribosomes, Proc. Natl. Acad. Sci. USA 69:753–755.

    Google Scholar 

  29. Richter, D., 1973, Competition between the elongation factors 1 and 2, and phenylalanyl transfer ribonucleic acid for the ribosomal binding sites in a polypeptide-synthesizing system from the brain, J. Biol. Chem. 248:2853–2857.

    PubMed  CAS  Google Scholar 

  30. Moazed, D., Robertson, J. M., and Noller, H. F., 1988, Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA, Nature 334:362–364.

    Article  PubMed  CAS  Google Scholar 

  31. Twardowski, T., and Nierhaus, K. H., 1993, The α-sarcin stem-loop structure of 23S rRNA: Hybridization of antisense probes provokes drastic effects on the large ribosomal subunit, submitted.

    Google Scholar 

  32. Gavrilova, L. P., Perminova, I. N., and Spirin, A. S., 1981, Elongation factor Tu can reduce translation errors in poly(U)-directed cell-free systems, J. Mol. Biol. 149:69–78.

    Article  PubMed  CAS  Google Scholar 

  33. Freier, S. M., Kierzek, R., Jaeger, J. A., Sugimoto, N., Caruthers, M. H., Neilson, T., and Turner, D. H., 1986, Improved free-energy parameters for predictions of RNA duplex stability, Proc. Natl. Acad. Sci. USA 83:9373–9377.

    Article  PubMed  CAS  Google Scholar 

  34. Jaeger, J. A., Turner, D. H., and Zuker, M., 1989, Improved predictions of secondary structures for RNA, Proc. Natl. Acad. Sci. USA 86:7706–7710.

    Article  PubMed  CAS  Google Scholar 

  35. Gutell, R. R., Schnare, M. N., and Gray, M. W., 1990, A compilation of large subunit (23S-like) ribosomal RNA sequences presented in a secondary structure format, Nucleic Acids Res. 18:2319– 2330.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nierhaus, K.H., Triana, F. (1993). Role of Elongation Factors in Steering the Ribosomal Elongation Cycle. In: Ilan, J. (eds) Translational Regulation of Gene Expression 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2894-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2894-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6254-8

  • Online ISBN: 978-1-4615-2894-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics