Skip to main content

The Early Diagenesis of Organic Matter: Bacterial Activity

  • Chapter
Organic Geochemistry

Part of the book series: Topics in Geobiology ((TGBI,volume 11))

Abstract

Bacteria are the primary agents of the early diagenesis of organic matter (OM) in marine sediments. The reasons for their predominant roles are straightforward: (1) they occur abundantly and universally throughout all marine sediments; (2) they can respire, reproduce, and, therefore, use OM more rapidly than any other organisms; (3) they possess enzymes and enzyme systems (in many cases, unique to the prokaryotic kingdom) that make them extraordinarily versatile in their nutritional requirements and abilities to alter a wide variety of particulate and dissolved organic (and inorganic) materials; and (4) they readily enter into complex associations with each other and with higher organisms in ways that produce powerful degradative capabilities beyond those of a single organism in isolation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alldredge, A. L., and Cohen, Y., 1987, Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets, Science 235:689–691.

    Article  CAS  Google Scholar 

  • Alldredge, A. L., and Silver, M., 1988, Characteristics, dynamics, and significance of marine snow, Prog. Oceanogr. 20:41–82.

    Article  Google Scholar 

  • Aller, J. Y., 1989, Quantifying sediment disturbance by bottom currents and its effect on benthic communities in a deep-sea western boundary zone, Deep-Sea Res. 36:901–934.

    Article  Google Scholar 

  • Aller, R. C., 1982, The effects of macrobenthos on chemical properties of marine sediment and overlying water, in: Animal-Sediment Interactions (P. L. McCall and M. J. S. Tevesz, eds.), Plenum Press, New York, pp. 53–102.

    Google Scholar 

  • Aller, R. C., and Aller, J. Y., 1986, Evidence for localized enhancement of biological activity associated with tube and burrow structures in deep-sea sediments at the HEBBLE site, western North Atlantic, Deep-Sea Res. 33:755–790.

    Article  CAS  Google Scholar 

  • Aller, R. C., and Yingst, J. Y., 1980, Relationships between microbial distributions and the anaerobic decomposition of organic matter in surface sediments of Long Island Sound, USA, Mar. Biol. 56:29–42.

    Article  CAS  Google Scholar 

  • Alongi, D., 1987a, Bacterial productivity and microbial biomass in tropical mangrove sediments, Microb. Ecol. 15:59–78.

    Article  Google Scholar 

  • Alongi, D., 1987b, The distribution and composition of deep-sea microbenthos in a bathyal region of the western Coral Sea, Deep-Sea Res. 34:1245–1254.

    Article  CAS  Google Scholar 

  • Alongi, D., 1989, The role of soft-bottom benthic communities in tropical mangrove and coral reef ecosystems, Rev. Aquat. Sci. 1(2):243–280.

    Google Scholar 

  • Alongi, D. M., 1990, Bacterial growth rates, production and estimates of detrital carbon utilization in deep-sea sediments of the Solomon and Coral Seas, Deep-Sea Res. 37:731–746.

    Article  CAS  Google Scholar 

  • Alperin, M. J., and Reeburgh, W. S., 1984, Geochemical observations supporting anaerobic methane oxidation, in: Microbial Growth on C-1 Compounds (R. L. Crawford and R. S. Hanson, eds.), American Society for Microbiology, Washington, D.C., pp. 282–289.

    Google Scholar 

  • Alperin, M. J., Reeburgh, W. S., and Whiticar, M. J., 1988, Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation, Glob. Biogeochem. Cycles 2:279–288.

    Article  CAS  Google Scholar 

  • Archer, D., Emerson, S., and Smith, C. R., 1989, Direct measurements of the diffusive sublayer at the deep sea floor using oxygen microelectrodes, Nature 340:623–626.

    Article  Google Scholar 

  • Atlas, R. M., and Griffiths, R. P., 1984, Bacterial populations of the Beaufort Sea, in: The Alaskan Beaufort Sea: Ecosystems and Environments (P. W. Barnes, D. M. Schell, and E. Reimnitz, eds.), Academic Press, New York, pp. 327–345.

    Google Scholar 

  • Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., and Thingstad, F., 1983, The ecological role of water-column microbes in the sea, Mar. Ecol. Prog. Ser. 10:257–263.

    Article  Google Scholar 

  • Banse, K., 1964, On the vertical distribution of Zooplankton in the sea, Prog. Oceanogr. 2:53–125.

    Article  Google Scholar 

  • Battersby, N. S., and Brown, C. M., 1982, Microbial activity in organically enriched marine sediments, in: Sediment Microbiology (D. B. Nedwell and C. M. Brown, eds.), Academic Press, New York, pp. 147–170.

    Google Scholar 

  • Bender, M. L., and Heggie, D. T., 1984, Fate of organic carbon reaching the deep sea floor: A status report, Geochim. Cosmochim. Acta 48:977–986.

    Article  CAS  Google Scholar 

  • Bender, M. L., Fanning, K. A., Froelich, P. N., Heath, G. R., and Maynard, V., 1977, Interstitial nitrate profiles and oxidation of sedimentary organic matter in the Eastern Equatorial Atlantic, Science 198:605–609.

    Article  CAS  Google Scholar 

  • Benner, R., Maccubbin, A. E., and Hodson, R. E., 1984, Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulosic and synthetic lignin by sediment microflora, Appl. Environ. Microbiol. 47:998–1004.

    CAS  Google Scholar 

  • Benner, R., Moran, M. A., and Hodson, R. E., 1986, Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: Relative contributions of procaryotes and eucaryotes, Limnol. Oceanogr. 31:89–100.

    Article  Google Scholar 

  • Benner, R., Lay, J., K’nees, E., and Hodson, R. E., 1988, Carbon conversion efficiency for bacterial growth on lignocellulose: Implications for detritus-based food webs, Limnol. Oceanogr. 33:1514–1526.

    Article  CAS  Google Scholar 

  • Berelson, W. M., and Hammond, D. E., 1986, The calibration of a new free vehicle benthic flux chamber for use in the deep sea, Deep-Sea Res. 33:1439–1454.

    Article  CAS  Google Scholar 

  • Berner, R. A., 1974, Kinetic models for the early diagenesis of nitrogen, sulfur, phosphorus and silicon in anoxic marine sediments, in: The Sea, Vol. 5 (E. D. Goldberg, ed.), Wiley-Interscience, New York, pp. 427–449.

    Google Scholar 

  • Berner, R. A., 1977, Stoichiometric models for nutrient regeneration in anoxic sediments, Limnol. Oceanogr. 22:781–786.

    Article  CAS  Google Scholar 

  • Berner, R. A., 1980, Early Diagenesis: A Theoretical Approach, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Billen, G., 1982, Modelling the processes of organic matter degradation and nutrients in sedimentary systems, in: Sediment Microbiology (D. B. Nedwell and C. M. Brown, eds.), Academic Press, New York, pp. 15–52.

    Google Scholar 

  • Bird, D. F., and Duarte, C. M., 1989, Bacteria-organic matter relationship in sediments: A case of spurious correlation, Can. J. Fish. Aquat. Sci. 46:904–908.

    Article  Google Scholar 

  • Biscaye, P., Anderson, R. F., and Deck, B. L., 1988, Fluxes of particles and constituents to the eastern United States continental slope and rise: SEEP I, Cont. Shelf Res. 8:855–904.

    Article  Google Scholar 

  • Boto, K. G., Alongi, D. M., and Nott, A. L. J., 1989, Dissolved organic carbon-bacteria interactions at sediment-water interface in a tropical mangrove system, Mar. Ecol. Prog. Ser. 51:243–251.

    Article  CAS  Google Scholar 

  • Boyer, J., 1986, End products of anaerobic chitin degradation by salt marsh bacteria as substrates for dissimilatory sulfate reduction and methanogenesis, Appl. Environ. Microbiol. 52:1415–1418.

    CAS  Google Scholar 

  • Breznak, J. A., 1982, Intestinal microflora of termites and other xylophagous insects, Annu. Rev. Microbiol. 36:323–343.

    Article  CAS  Google Scholar 

  • Butler, J. H. A., and Buckerfield, J. C., 1979, Digestion of lignin by termites, Soil Biol. Biochem. 11:507–513.

    Article  CAS  Google Scholar 

  • Butman, C. A., 1986, Sediment trap biases in turbulent flow: Results from a laboratory flume study, J. Mar. Res. 44:645–693.

    Article  Google Scholar 

  • Butman, C. A., Grant, W. D., and Stolzenbach, K. D., 1986, Predictions of sediment trap biases in turbulent flow: A theoretical analysis based on observations from the literature, J. Mar. Res. 44:601–644.

    Article  Google Scholar 

  • Cahet, G., and Sibuet, M., 1986, Activité biologique en domaine profond: Transformations biochimiques in situ de composés organiques marqués au carbone-14 à l’interface eau-sediment par 2000 m de profondeur dans le golfe de Gascogne, Mar. Biol. 90:307–315.

    Article  Google Scholar 

  • Canfield, D. E., 1989, Sulfate reduction and oxic respiration in marine sediments: Implications for organic carbon preservation in euxinic environments, Deep-Sea Res. 36:121–138.

    Article  CAS  Google Scholar 

  • Capone, D. G., and Kiene, R. P., 1988, Comparison of microbial dynamics in marine and freshwater sediments: Contrasts in anaerobic carbon catabolism, Limnol. Oceanogr. 33:725–749.

    Article  CAS  Google Scholar 

  • Certes, A., 1884, Sur la culture, à l’abri des germes atmosphériques, des eaux et des sédiments rapportés par les expéditions du Travailleur et du Talisman, 1882–1883, C. R. Acad. Sci. 98:690–693.

    Google Scholar 

  • Cho, B. C., and Azam, F., 1988, Major role of bacteria in biogeochemical fluxes in the ocean’s interior, Nature 332:441–443.

    Article  CAS  Google Scholar 

  • Christensen, J. P., and Rowe, G. T., 1984, Nitrification and oxygen consumption in Northwest Atlantic deep-sea sediments, J. Mar. Res. 42:1099–1116.

    Article  CAS  Google Scholar 

  • Colberg, P. J., and Young, L. Y., 1982, Biodegradation of lignin-derived molecules under anaerobic conditions, Can. J. Microbiol. 28:886–889.

    Article  CAS  Google Scholar 

  • Cole, J. J., Honjo, S., and Erez, J., 1987, Benthic decomposition of organic matter at a deep-water site in the Panama Basin, Nature 327:703–704.

    Article  CAS  Google Scholar 

  • Costerton, J. W., Cheng, K.-J., Geesey, G. G., Ladd, T. I., Nickel, J. C., Dasgupta, M., and Marrie, T. J., 1987, Bacterial biofilms in nature and disease, Annu. Rev. Microbiol. 41:435–464.

    Article  CAS  Google Scholar 

  • Cowen, J. P., 1989, Positive pressure effect on manganese binding by bacteria in deep-sea hydrothermal plumes, Appl. Environ. Microbiol. 55:764–766.

    CAS  Google Scholar 

  • Craven, D. B., and Karl, D. A., 1984, Microbial RNA and DNA synthesis in marine sediments, Mar. Biol. 83:129–139.

    Article  CAS  Google Scholar 

  • Craven, D. B., Jahnke, R. A., and Carlucci, A. F., 1986, Fine-scale vertical distributions of microbial biomass and activity in California Borderland sediments, Deep-Sea Res. 33:379–390.

    Article  Google Scholar 

  • Crawford, R. L., 1981, Lignin Biodegradation and Transformation, Wiley-Interscience, New York.

    Google Scholar 

  • Dale, N. G., 1974, Bacteria in intertidal sediments: Factors related to their distribution, Limnol. Oceanogr. 19:509–518.

    Article  Google Scholar 

  • Danulat, E., 1986, Role of bacteria with regard to chitin degradation in the digestive tract of the cod Gadus morhua, Mar. Biol. 90:335–343.

    Article  CAS  Google Scholar 

  • deAngelis, M., Baross, J. A., and Lilley, M. D., 1991, Enhanced microbial methane oxidation in water from a deep-sea hydrothermal vent field at simulated in situ hydrostatic pressures, Limnol. Oceanogr. 36:565–569.

    Article  CAS  Google Scholar 

  • Deming, J. W., 1985, Bacterial growth in deep-sea sediment trap and boxcore samples, Mar. Ecol. Prog. Ser. 25:305–312.

    Article  Google Scholar 

  • Deming, J. W., 1986, Ecological strategies of barophilic bacteria in the deep ocean, Microbiol. Sci. 3:205–211.

    CAS  Google Scholar 

  • Deming, J. W., and Colwell, R. R., 1982, Barophilic bacteria associated with digestive tracts of abyssal holothurians, Appl. Environ. Microbiol. 44:1222–1230.

    CAS  Google Scholar 

  • Deming, J. W., and Colwell, R. R., 1985, Observations of barophilic microbial activity in samples of sediments and intercepted particulates from the Demerara Abyssal Plain, Appl. Environ. Microbiol. 50:1002–1006.

    CAS  Google Scholar 

  • Deming, J. W., and Yager, P. L., 1992, Natural bacterial assemblages in deep-sea sediments: Towards a global view, in: Deep-Sea Food Chains—Their Relation to the Global Carbon Cycles (G. T. Rowe and V. Pariente, eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 11–27.

    Chapter  Google Scholar 

  • Deming, J. W., Tabor, P. S., and Colwell, R. R., 1981, Barophilic growth of bacteria from intestinal tracts of deep-sea invertebrates, Microb. Ecol. 7:85–94.

    Article  Google Scholar 

  • Deming, J. W., Hada, H., Colwell, R. R., Luehrsen, K. R., and Fox, G. E., 1984, The ribonucleotide sequence of 5S rRNA from two strains of deep-sea barophilic bacteria, J. Gen. Microbiol. 130:1911–1920.

    CAS  Google Scholar 

  • Deming, J. W., Somers, L. K., Straube, W. L., Swartz, D. G., and MacDonell, M. T., 1988, Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov., Syst. Appl. Microbiol. 10:152–160.

    Article  Google Scholar 

  • Desbruyeres, D., Deming, J. W., Dinet, A., and Khripounoff, A., 1985, Réactions de l’écosystème benthique profond aux perturbations: Nouveaux résultats expérimentaux, in: Peuplements Profonds du Golfe de Gascogne (L. Laubier and C. Monniot, eds.), IFREMER (Institute Français de Recherche pour l’Exploitation de la Mer), Brest, France, pp. 193–208.

    Google Scholar 

  • Deuser, W. G., and Ross, E. H., 1980, Seasonal change in the flux of organic carbon to the deep Sargasso Sea, Nature 283:364–365.

    Article  CAS  Google Scholar 

  • Deuser, W. G., Ross, E. H., and Anderson, R. F., 1981, Seasonality in the supply of sediment to the deep Sargasso Sea and implications for the rapid transfer of matter to the deep ocean, Deep-Sea Res. 28A:495–505.

    Article  Google Scholar 

  • Devol, A. H., 1987, Verification of flux measurements made with in situ benthic chambers, Deep-Sea Res. 34:1007–1026.

    Article  CAS  Google Scholar 

  • Dwyer, D. F., Weeg-Aerssens, E., Shelton, D. R., and Tiedje, J. M., 1988, Bioenergetic conditions of butyrate metabolism by a syntrophic, anaerobic bacterium in co-culture with hydrogen-oxidizing methanogenic and sulfidogenic bacteria, Appl. Environ. Microbiol. 54:1354–1359.

    CAS  Google Scholar 

  • Dye, A. H., 1983, A method for the quantitative estimation of bacteria from mangrove sediments, Estuarine Coastal Shelf Sci. 17:207–212.

    Article  Google Scholar 

  • Ellery, W. N., and Schleyer, M. H., 1984, Comparison of homogenization and ultrasonication as techniques in extracting attached sedimentary bacteria, Mar. Ecol. Prog. Ser. 15:247–250.

    Article  Google Scholar 

  • Emerson, S. Jahnke, R., Bender, M., Froelich, P., Klinkhammer, G., Bowser, C., and Setlock, G., 1980, Early diagenesis in sediments from the eastern equatorial Pacific: 1. Pore water nutrient and carbonate results, Earth Planet. Sci. Lett. 49:57–80.

    Article  CAS  Google Scholar 

  • Emerson, S., Reimers, C., Fischer, K., and Heggie, D., 1985, Organic carbon dynamics and preservation in deep-sea sediments, Deep-Sea Res. 32:1–22.

    Article  CAS  Google Scholar 

  • Emerson, S., Stump, C., Grootes, P. M., Stuiver, M., Farwell, G. W., and Schmidt, F. H., 1987, Estimates of degradable organic carbon in deep-sea surface sediments from 14C concentrations, Nature 329:51–53.

    Article  CAS  Google Scholar 

  • Eppley, R. W., and Peterson, B. J., 1979, Particulate organic matter flux and planktonic new production in the deep ocean, Nature 282:677–680.

    Article  Google Scholar 

  • Fallon, R. D., Newell, S. Y., and Hopkinson, C. S., 1983, Bacterial production in marine sediments: Will cell-specific measures agree with whole-system metabolism?, Mar. Ecol. Prog. Ser. 11:119–127.

    Article  Google Scholar 

  • Fenchel, T. M., 1967, The ecology of marine microbenthos I. The quantitative importance of ciliates as compared with metazoans in various types of sediments, Ophelia 4:121–137.

    Article  Google Scholar 

  • Fenchel, T. M., 1969, The ecology of marine microbenthos IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa, Ophelia 6:1–182.

    Article  Google Scholar 

  • Fenchel, T. M., 1987, Ecology of Protozoa, The Biology of Free-Living Phagotrophic Protists, Brock-Springer Series in Contemporary BioScience, Science Tech. Publishers, Madison, Wisconsin.

    Book  Google Scholar 

  • Fenchel, T. M., and Jorgensen, B. B., 1977, Detritus food chains of aquatic ecosystems: The role of bacteria, in: Advances in Microbial Ecology, Vol. 1 (M. Alexander, ed.), Plenum Press, New York, pp. 1–58.

    Chapter  Google Scholar 

  • Findlay, R. H., Pollard, P. C., Moriarty, D. J. W., and White, D. C., 1985, Quantitative determination of microbial activity and community nutritional status in estuarine sediments: Evidence for a disturbance artifact, Can. J. Microbiol. 31:493–498.

    Article  CAS  Google Scholar 

  • Fong, J. B., and Mann, K. H., 1980, Role of gut flora in the transfer of amino acids through a marine food chain, Can. J. Fish. Aquat. Sci. 37:88–96.

    Article  Google Scholar 

  • Foulds, J. B., and Mann, K. H., 1978, Cellulose digestion in Mysis stenolepsis and its ecological implications, Limnol. Oceanogr. 23:760–766.

    Article  CAS  Google Scholar 

  • Friesan, J. A., Mann, H. K., and Novitsky, K. H., 1986, Mysis digests cellulose in the absence of a gut microflora, Can. J. Zool. 64:431–441.

    Article  Google Scholar 

  • Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V., 1979, Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis, Geochim. Cosmochim. Acta 43:1075–1090.

    Article  CAS  Google Scholar 

  • Gerritse, J., Schut, F., and Gottschal, J. C., 1990, Mixed chemostat cultures of obligately aerobic and fermentative or methanogenic bacteria grown under oxygen-limiting conditions, FEMS Microbiol. Lett. 66:87–94.

    Article  CAS  Google Scholar 

  • Goodrich, T. D., and Morita, R. Y., 1977, Bacterial chitinase in the stomachs of marine fishes from Yaquina Bay, Oregon, USA, Mar. Biol. 41:355–360.

    Article  CAS  Google Scholar 

  • Graf, G., 1986, Winter inversion of biomass and activity profile in a marine sediment, Mar. Ecol. Prog. Ser. 33:231–235.

    Article  Google Scholar 

  • Graf, G., 1989, Benthic-pelagic coupling in a deep-sea benthic community, Nature 341:437–439.

    Article  Google Scholar 

  • Grundmanis, V., and Murray, J. W., 1982, Aerobic respiration in pelagic marine sediments, Geochim. Cosmochim. Acta 46:1101–1120.

    Article  CAS  Google Scholar 

  • Gundersen, J. K., and Jorgensen, B. B., 1990, Microstructure of diffusive boundary layers and the oxygen uptake of the sea floor, Nature 345:604–607.

    Article  CAS  Google Scholar 

  • Haedrich, R. L., and Rowe, G. T., 1978, Megafaunal biomass in the deep sea, Nature 269:141–142.

    Article  Google Scholar 

  • Hansen, J. A., Alongi, D. M., Moriarty, D. J. W., and Pollard, P. C., 1987, The dynamics of benthic microbial communities at Davies Reef, central Great Barrier Reef, Coral Beefs 6:63–70.

    Article  Google Scholar 

  • Harvey, H. R., Richardson, M. D., and Patton, J. S., 1984, Lipid composition and vertical distribution of bacteria in anaerobic sediments of the Venezuela Basin, Deep-Sea Res. 31:403–413.

    Article  CAS  Google Scholar 

  • Henrichs, S. M., and Doyle, A. P., 1986, Decomposition of 14C-labeled organic substances in marine sediments, Limnol. Oceanogr. 31:765–778.

    Article  CAS  Google Scholar 

  • Henrichs, S. M., and Reeburgh, W. S., 1987, Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy, Geomicrobiol. J. 5:191–237.

    Article  CAS  Google Scholar 

  • Herwig, R. P., and Staley, J. T., 1986, Anaerobic bacteria from the digestive tract of North Atlantic fin whales (Balaenoptera physalus), FEMS Microbiol. Lett. 38:361–371.

    Article  CAS  Google Scholar 

  • Herwig, R. P., Staley, J. T., Nerini, M. K., and Braham, H. W., 1984, Baleen whales: Preliminary evidence for forestomach microbial fermentation, Appl. Environ. Microbiol. 47:421–423.

    CAS  Google Scholar 

  • Hessler, R. R., Ingram, C. L., Yayanos, A. A., and Burnett, B. R., 1978, Scavenging amphipods from the floor of the Philippine Trench, Deep-Sea Res. 25:1029–1048.

    Article  Google Scholar 

  • Hinga, K., Sieburth, J. McN., and Heath, G. R., 1979, The supply and use of organic material at the deep sea floor, J. Mar. Res. 37:557–579.

    CAS  Google Scholar 

  • Honjo, S., 1978, Sedimentation of materials in the Sargasso Sea at 5,367 m deep station, J. Mar. Res. 36:469–492.

    CAS  Google Scholar 

  • Hungate, R. E., 1975, The rumen microbial ecosystem, Annu. Rev. Ecol. Syst. 6:39–66.

    Article  CAS  Google Scholar 

  • Isao, K., Hara, S., Terauchi, K., and Kogure, K., 1990, Role of submicrometre particles in the ocean, Nature 345:242–244.

    Article  Google Scholar 

  • Ittekkot, V., Deuser, W. G., and Degens, E. T., 1984, Seasonality in the fluxes of sugars, amino acids, and amino sugars to the deep ocean: Panama Basin, Deep-Sea Res. 31:1057–1069.

    Article  CAS  Google Scholar 

  • Jackson, G. A., 1990, A model of the formation of marine algal flocs by physical coagulation processes, Deep-Sea Res. 37:1197–1211.

    Article  CAS  Google Scholar 

  • Jahnke, R., 1985, A model of microenvironments in deep-sea sediments: Formation and effects on porewater profiles, Limnol. Oceanogr. 30:956–965.

    CAS  Google Scholar 

  • Jahnke, R. A., and Jackson, G. A., 1987, Role of sea floor organisms in oxygen consumption in the deep North Pacific Ocean, Nature 329:621–623.

    Article  CAS  Google Scholar 

  • Jahnke, R., Emerson, S., and Murray, J. W., 1982, A model of oxygen reduction, denitrification and organic matter mineralization in marine sediments, Limnol. Oceanogr. 27:610–623.

    Article  CAS  Google Scholar 

  • Jahnke, R., Emerson, S. R., Cochran, J. K., and Hirshberg, D. J., 1986, Fine scale distributions of porosity and particulate excess 210Pb, organic carbon and CaCO3 in surface sediments of the deep equatorial Pacific, Earth Planet. Sci. Lett. 77:59–69.

    Article  CAS  Google Scholar 

  • Jahnke, R., A., Reimers, C. E., and Craven, D. B., 1990, Intensification of recycling of organic matter at the sea floor near ocean margins, Nature 348:50–54.

    Article  CAS  Google Scholar 

  • Jannasch, H. W., 1979, Microbial turnover of organic matter in the deep sea, BioScience 29:228–232.

    Article  Google Scholar 

  • Jannasch, H. W., and Wirsen, C. O., 1973, Deep-sea microorganisms: In situ response to nutrient enrichment, Science 180:641–643.

    Article  CAS  Google Scholar 

  • Jannasch, H. W., and Wirsen, C. O., 1983, Microbiology of the deep sea, in: The Sea, Vol. 8, Deep-Sea Biology (G. T. Rowe, ed.), John Wiley & Sons, New York, pp. 231–259.

    Google Scholar 

  • Jannasch, H. W., and Wirsen, C. O., 1984, Variability of pressure adaptation in deep sea bacteria, Arch. Microbiol. 139:281–288.

    Article  Google Scholar 

  • Jorgensen, B. B., 1977, The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark), Limnol. Oceanogr. 5:814–832.

    Article  Google Scholar 

  • Jorgensen, B. B., 1982, Mineralization of organic matter in the seabed—the role of sulfate reduction, Nature 296:643–645.

    Article  Google Scholar 

  • Jumars, P. A., Penry, D. L., Baross, J. A., Perry, M. J., and Frost, B. W., 1989, Closing the microbial loop: Dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion and absorption in animals, Deep-Sea Res. 36:483–495.

    Article  CAS  Google Scholar 

  • Jumars, P. A., Mayer, L. M., Deming, J. W., Baross, J. A., and Wheatcroft, R. A., 1990, Deep-sea deposit-feeding strategies suggested by environmental and feeding constraints, Philos. Trans. R. Soc. London Ser. A 331:85–101.

    Article  Google Scholar 

  • Karl, D. M., 1986, Determination of in situ microbial biomass, viability, metabolism, and growth, in: Bacteria in Nature, Vol. 2, Methods and Special Applications in Bacterial Ecology (J. S. Poindexter and E. R. Leadbetter, eds.), Plenum Press, New York, pp. 85–176.

    Google Scholar 

  • Karl, D. M., and Novitsky, J. A., 1988, Dynamics of microbial growth in surface layers of a coastal marine sediment ecosystem, Mar. Ecol. Prog. Ser. 50:169–176.

    Article  CAS  Google Scholar 

  • Karl, D. M., Jones, D. R., Novitsky, J. A., Winn, C. D., and Bossard, P., 1987, Specific growth rates of natural microbial communities measured by adenine nucleotide pool turnover, J. Microbiol. Methods 6:221–235.

    Article  CAS  Google Scholar 

  • Karl, D. M., Knauer, G. A., and Martin, J. H., 1988, Downward flux of particulate organic matter in the ocean: A particle decomposition paradox, Nature 332:438–441.

    Article  Google Scholar 

  • Kemp, P. F., 1987, Potential impact on bacteria of grazing by a macrofaunal deposit-feeder, and the fate of bacterial production, Mar. Ecol. Prog. Ser. 36:151–161.

    Article  Google Scholar 

  • Kemp, P. F., 1988, Bacterivory by benthic ciliates: Significance as a carbon source and impact on sediment bacteria, Mar. Ecol. Prog. Ser. 49:163–169.

    Article  Google Scholar 

  • Kemp, P. F., 1990, The fate of benthic bacterial production, Rev. Aquat. Sci. 2:109–123.

    Google Scholar 

  • Khripounoff, A., and Rowe, G. T., 1985, Les apports organiques et leur transformation en milieu abyssal à l’interface eau-sédiment dans l’ocean Atlantique tropical, Oceanol. Acta 8:293–301.

    CAS  Google Scholar 

  • King, G. M., 1986, Characterization of β-glucosidase activity in intertidal marine sediments, Appl. Environ. Microbiol. 51:373–380.

    CAS  Google Scholar 

  • Lee, C., 1992, Controls on organic carbon preservation: The use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems, Geochim. Cosmochim. Acta 56:3323–3335.

    Article  CAS  Google Scholar 

  • Lilley, M. D., Baross, J. A., and Gordon, L. I., 1982, Dissolved hydrogen and methane in Saanich Inlet, British Columbia, Deep-Sea Res. 29:1471–1487.

    Article  CAS  Google Scholar 

  • Ljungdahl, L. G., 1986, The autotrophic pathway of acetate synthesis in acetogenic bacteria, Annu. Rev. Microbiol. 40:415–450.

    Article  CAS  Google Scholar 

  • Lochte, K., 1992, Bacterial standing stock and consumption of organic carbon in the benthic boundary layer of the abyssal North Atlantic, in: Deep-Sea Food Chains—Their Relation to the Global Carbon Cycles (G. T. Rowe and V. Pariente, eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 1–10.

    Chapter  Google Scholar 

  • Lochte, K., and Turley, C. M., 1988, Bacteria and cyanobacteria associated with phytodetritus in the deep sea, Nature 333:67–69.

    Article  Google Scholar 

  • Lovley, D. R., and Phillips, E. J. P., 1988, Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese, Appl. Environ. Microbiol. 54:1472–1480.

    CAS  Google Scholar 

  • Lovley, D. R., Phillips, E. J. P., and Lonergan, D. J., 1989a, Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens, Appl. Environ. Microbiol. 55:700–706.

    CAS  Google Scholar 

  • Lovley, D. R., Baedecker, M. J., Lonergan, D. J., Cozzarelli, I. M., Phillips, E. J. P., and Siegel, D. I., 1989b, Oxidation of aromatic contaminants coupled to microbial iron reduction, Nature 339:297–299.

    Article  CAS  Google Scholar 

  • Mann, K. H., 1988, Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems, Limnol. Oceanogr. 33:910–930.

    Article  CAS  Google Scholar 

  • Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. M., 1987, VERTEX: Carbon cycling in the northeast Pacific, Deep-Sea Res. 34:267–285.

    Article  CAS  Google Scholar 

  • Martin, M. M., Martin, J. S., Kukor, J. J., and Merritt, R. W., 1980, The digestion of protein and carbohydrate by the stream detritivore, Tipula abdominalis (Diptera, Tipulidae), Oecologia 46:360–364.

    Google Scholar 

  • Mayer, L. M., 1989, Extracellular proteolytic enzyme activity in sediments of an intertidal mudflat, Limnol. Oceanogr. 34:973–981.

    Article  CAS  Google Scholar 

  • Mayer, L. M., Macko, S. A., and Cammen, L., 1988, Provenance, concentrations and nature of sedimentary organic nitrogen in the Gulf of Maine, Mar. Chem. 25:291–304.

    Article  CAS  Google Scholar 

  • McCorkle, D. C., and Emerson, S. R., 1988, The relationship between pore water carbon isotopic composition and bottom water oxygen concentration, Geochim. Cosmochim. Acta 52:1169–1178.

    Article  CAS  Google Scholar 

  • McCorkle, D. C., Emerson, S. R., and Quay, P. D., 1985, Stable carbon isotopes in marine porewaters, Earth Planet. Sci. Lett. 74:13–26.

    Article  CAS  Google Scholar 

  • Meyer-Reil, L.-A., 1984, Bacterial biomass and heterotrophic, activity in sediments and overlying waters, in: Heterotrophic Activity in the Sea (J. E. Hobbie and P. J. leB. Williams, eds.), Plenum Press, New York, pp. 523–546.

    Chapter  Google Scholar 

  • Meyer-Reil, L.-A., 1986, Measurement of hydrolytic activity and incorporation of dissolved organic substrates by microorganisms in marine sediments, Mar. Ecol. Prog. Ser. 31:143–149.

    Article  CAS  Google Scholar 

  • Meyer-Reil, L.-A., 1987a, Seasonal and spatial distribution of extracellular enzymatic activities and microbial incorporation of dissolved organic substrates in marine sediments, Appl. Environ. Microbiol. 53:1748–1755.

    CAS  Google Scholar 

  • Meyer-Reil, L.-A., 1987b, Biomass and activity of benthic bacteria, in: Lecture Notes on Coastal and Estuarine Studies, Volume XIII (M. J. Bowman, R. T. Barber, C. N. K. Mooers, and J. A. Raven, eds.), Springer-Verlag, New York, pp. 93–110.

    Google Scholar 

  • Meyer-Reil, L.-A., Bolter, M., Dawson, R., Liebezeit, G., Szwerinski, H., and Wolter, K., 1980, Interrelationships between microbiological and chemical parameters of sandy beach sediments, a summer aspect, Appl. Environ. Microbiol. 39:797–802.

    CAS  Google Scholar 

  • Michaels, A. F., and Silver, M. W., 1988, Primary production, sinking fluxes and the microbial food web, Deep-Sea Res. 35:473–490.

    Article  Google Scholar 

  • Miller, D. C., 1989, Abrasion effects on microbes in sandy sediments, Mar. Ecol. Prog. Ser. 55:73–82.

    Article  Google Scholar 

  • Montagna, P. A., Bauer, J. E., Hardin, D., and Spies, R. B., 1989, Vertical distribution of microbial and meiofaunal populations in sediments of a natural coastal hydrocarbon seep, J. Mar. Res. 47:657–680.

    Article  CAS  Google Scholar 

  • Moriarty, D. J. W., and Pollard, P. C., 1981, DNA synthesis as a measure of bacterial productivity in seagrass sediments, Mar. Ecol. Prog. Ser. 5:151–156.

    Article  Google Scholar 

  • Moriarty, D. J. W., and Pollard, P. C., 1982, Diel variation of bacterial productivity in seagrass (Zostera capricorni) beds measured by rate of thymidine incorporation into DNA, Mar. Biol. 72:165–173.

    Article  Google Scholar 

  • Moriarty, D. J. W., Pollard, P. C., Hunt, W. G., Moriarty, C. M., and Wassenberg, T. J., 1985, Productivity of bacteria and microalgae and the effect of grazing by holothurians in sediments on a coral reef flat, Mar. Biol. 85:293–300.

    Article  Google Scholar 

  • Morrison, S. J., and White, D. C., 1980, Effects of grazing by estuarine gammaridean amphipods on the microbiota of allochthonous detritus, Appl. Environ. Microbiol. 40:659–671.

    CAS  Google Scholar 

  • Muller, P. J., and Suess, E. 1979, Productivity, sedimentation rate, and sedimentary organic matter in the oceans—I. Organic carbon preservation, Deep-Sea Res. 26:1347–1362.

    Article  Google Scholar 

  • Newell, S. Y., and Fallon, R. D., 1982, Bacterial productivity in the water column and sediments of the Georgia (USA) coastal zone: Estimates via direct counting and parallel measurement of thymidine incorporation, Microb. Ecol. 8:33–46.

    Article  Google Scholar 

  • Novitsky, J. A., 1983a, Heterotrophic activity throughout a vertical profile of seawater and sediment in Halifax Harbor, Canada, Appl. Environ. Microbiol. 45:1753–1760.

    CAS  Google Scholar 

  • Novitsky, J. A., 1983b, Microbial activity at the sediment-water interface in Halifax Harbor, Canada, Appl. Environ. Microbiol. 45:1761–1766.

    CAS  Google Scholar 

  • Novitsky, J. A., 1987, Microbial growth rates and biomass production in a marine sediment: Evidence for a very active but mostly nongrowing community, Appl. Environ. Microbiol. 53:2368–2372.

    CAS  Google Scholar 

  • Oremland, R. S., 1988, The biogeochemistry of methanogenic bacteria, in: The Biology of Anaerobic Microorganisms (A. Zehnder, ed.), John Wiley & Sons, New York, pp. 405–447.

    Google Scholar 

  • Pace, M. L., Glasser, J. E., and Pomeroy, L. R., 1984, A simulation analysis of continental shelf food webs, Mar. Biol. 82:47–63.

    Article  Google Scholar 

  • Paerl, H. W., and Carlton, R. G., 1988, Control of nitrogen fixation by oxygen depletion in surface-associated microzones, Nature 332:260–262.

    Article  CAS  Google Scholar 

  • Plante, C. J., and Jumars, P. A., 1992, The microbial environment of marine deposit-feeder guts characterized via microelectrodes, Microb. Ecol. 23:257–277.

    Article  Google Scholar 

  • Plante, C. J., Jumars, P A., and Baross, J. A., 1989, Rapid bacterial growth in the hindgut of a marine deposit feeder, Microb. Ecol. 18:29–44.

    Article  Google Scholar 

  • Plante, C. J., Jumars, P. A., and Baross, J. A., 1990, Digestive associations between marine detritivores and bacteria, Annu. Rev. Ecol. Syst. 21:93–127.

    Article  Google Scholar 

  • Pomeroy, L. R., 1974, The ocean’s food web, a changing paradigm, BioScience 24:499–504.

    Article  Google Scholar 

  • Pomeroy, L. R., 1979, Secondary production mechanisms of continental shelf communities, in: Ecological Processes in Coastal and Marine Systems (R. J. Livingston, ed.), Plenum Press, New York, pp. 163–186.

    Chapter  Google Scholar 

  • Pomeroy, L. R., and Deibel, D., 1986, Temperature regulation of bacterial activity during the spring bloom in Newfoundland coastal waters, Science 18:359–361.

    Article  Google Scholar 

  • Prim, P., and Lawrence, J. M., 1975, Utilization of marine plants and their constituents by bacteria isolated from the gut of echinoids (Echinodermata), Mar. Biol. 33:167–173.

    Article  Google Scholar 

  • Reeburgh, W. S., 1976, Methane consumption in Cariaco Trench waters and sediments, Earth Planet. Sci. Lett. 28:337–344.

    Article  CAS  Google Scholar 

  • Reeburgh, W. S., 1983, Rates of biogeochemical processes in anoxic sediments, Annu. Rev. Earth Planet. Sci. 11:269–298.

    Article  CAS  Google Scholar 

  • Reeburgh, W. S., 1989, Interaction of sulfur and carbon cycles in marine sediments, in: Evolution of the Global Biogeochemical Sulfur Cycle SCOPE 39 (P. Brimblecombe and A. Yu Lein, eds.), John Wiley & Sons, New York, pp. 125–159.

    Google Scholar 

  • Reeburgh, W. S., Ward, B. B., Whalen, S. C., Sandbeck, K. A., Kilpatrick, K. A., and Kerkhof, L. J., 1991, Black Sea methane geochemistry, Deep-Sea Res. 38:S1189–S1210.

    Article  Google Scholar 

  • Reimers, C. E., 1987, An in situ microprofiling instrument for measuring interfacial pore water gradients: Methods and oxygen profiles from the North Pacific Ocean, Deep-Sea Res. 34:2019–2035.

    Article  CAS  Google Scholar 

  • Reimers, C. E., and Smith, K. L., Jr., 1986, Reconciling measured and predicted fluxes of oxygen across the deep-sea sediment-water interface, Limnol. Oceanogr. 31:305–318.

    Article  CAS  Google Scholar 

  • Reimers, C. E., Kalhorn, S., Emerson, S. R., and Nealson, K. H., 1984, Oxygen consumption rates in pelagic sediments from the Central Pacific: First estimates from microelectrode profiles, Geochim. Cosmochim. Acta 48:903–910.

    Article  CAS  Google Scholar 

  • Reimers, C. E., Fischer, K. M., Merewether, R., Smith, K. L., Jr., and Jahnke, R. J., 1986, Oxygen microprofiles measured in situ in deep ocean sediments, Nature 320:741–744.

    Article  CAS  Google Scholar 

  • Revsbech, N. P., and Jorgensen, B. B., 1986, Microelectrodes: Their use in microbial ecology, in: Advances in Microbial Ecology, Vol. 9 (K. C. Marshall, ed.), Plenum Press, New York, pp. 293–352.

    Google Scholar 

  • Revsbech, N. P., Jorgensen, B. B., and Blackburn, T. H., 1979, Oxygen in the sea bottom measured with a microelectrode, Science 207:1355–1356.

    Google Scholar 

  • Rigler, F. H., 1982, Recognition of the possible: An advantage of empiricism in ecology, Can. J. Fish. Aquat. Sci. 39:1323–1331.

    Article  Google Scholar 

  • Rowe, G. T., 1981, The benthic processes of coastal upwelling ecosystems, in: Coastal Upwelling (F. A. Richards, ed.), American Geophysical Union, Washington, D.C., pp. 464–471.

    Chapter  Google Scholar 

  • Rowe, G. T., 1983, Biomass and production of the deep-sea macro-benthos, in: The Sea, Vol. 8, Deep-Sea Biology (G. T. Rowe, ed.), Wiley-Interscience, New York, pp. 97–122.

    Google Scholar 

  • Rowe, G. T., and Deming, J. W., 1985, The role of bacteria in the turnover of organic carbon in deep-sea sediments, J. Mar. Res. 43:925–950.

    Article  CAS  Google Scholar 

  • Rowe, G. T., and Gardner, W., 1979, Sedimentation rates in the slope water of the northwest Atlantic Ocean measured directly with sediment traps, J. Mar. Res. 37:581–600.

    CAS  Google Scholar 

  • Rowe, G. T., Clifford, C. H., Smith, K. L., and Hamilton, P. L., 1975, Benthic nutrient regeneration and its coupling to primary productivity in coastal waters, Nature 255:215–217.

    Article  CAS  Google Scholar 

  • Rowe, G. T., Smith, S., Falkowski, P. G., Whitledge, T. E., Theroux, R., Phoel, W., and Ducklow, H., 1986, Do continental shelves export organic matter?, Nature 324:559–561.

    Article  Google Scholar 

  • Rowe, G. T., Theroux, R., Phoel, W., Quinby, H., Wilke, R., Koschoreck, D., Whitledge, T. E., Falkowski, P. G., and Fray, C., 1988, Benthic carbon budgets for the continental shelf south of New England, Cont. Shelf Res. 8:511–527.

    Article  Google Scholar 

  • Rowe, G. T., Sibuet, M., Deming, J. W., Khripounoff, A., and Tietjen, J., 1990, Organic carbon residence time in the deep-sea benthos, Prog. Oceanogr. 24:141–160.

    Article  Google Scholar 

  • Rowe, G. T., Sibuet, M., Deming, J. W., Khripounoff, A., Tietjen, J., Macko, S., and Theroux, R., 1991, “Total” sediment biomass and preliminary estimates of organic carbon residence time in deep-sea benthos, Mar. Ecol. Prog. Ser. 79:99–114.

    Article  Google Scholar 

  • Rublee, P. A., 1982, Bacterial and microbial distribution in estuarine sediments, in: Estuarine Comparisons (V. S. Kennedy, ed.), Academic Press, New York, pp. 159–182.

    Google Scholar 

  • Sayles, F. L., and Curry, W. B., 1988, Delta 13C, TCO2, and the metabolism of organic carbon in deep sea sediments, Geochim. Cosmochim. Acta 52:2963–2978.

    Article  CAS  Google Scholar 

  • Sieburth, J. M., 1987, Contrary habitats for redox-specific processes: Methanogenesis in oxic waters and oxidation in anoxic waters, in: Microbes in the Sea (M. A. Sleigh, ed.), Ellis Horwood, Chichester, and John Wiley & Sons, New York, pp. 11–38.

    Google Scholar 

  • Sinsabaugh, R. L., Linkins, A. E., and Benfield, E. F., 1985, Cellulose digestion and assimilation by three leaf-shredding aquatic insects, Ecology 66:1464–1471.

    Article  CAS  Google Scholar 

  • Smetacek, V. S., 1985, Role of sinking in diatom life-history cycles: Ecological, evolutionary and geological significance, Mar. Biol. 84:239–251.

    Article  Google Scholar 

  • Smith, D. C., Simon, M., Alldredge, A. L., and Azam, F., 1992, Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution, Nature 359:139–142.

    Article  CAS  Google Scholar 

  • Smith, K. L., Jr., 1987, Food energy supply and demand: A discrepancy between particulate organic carbon flux and sediment community oxygen consumption in the deep sea, Limnol. Oceanogr. 32:201–220.

    Article  Google Scholar 

  • Smith, K. L., Jr., and Baldwin, R. J., 1984, Seasonal fluctuations in deep-sea sediment community oxygen consumption: Central and eastern Pacific, Nature 307:624–626.

    Article  CAS  Google Scholar 

  • Smith, K. L., Jr., and Teal, J. M., 1973, Deep-sea benthic community respiration—an in situ study to 1850 meters, Science 179:282–283.

    Article  Google Scholar 

  • Smith, K. L., Jr., Clifford, C., Eliason, A., Waiden, B., Rowe, G., and Teal, J. 1976, A free vehicle for measuring benthic community respiration, Limnol. Oceanogr. 21:164–170.

    Article  Google Scholar 

  • Smith, K. L., Jr., White, G. A., and Laver, M. B., 1979, Oxygen uptake and nutrient exchange of sediments measured in situ using a free vehicle grab respirometer, Deep-Sea Res. 16A:337–346.

    Article  Google Scholar 

  • Smith, K. L., Jr., Carlucci, A. F., Jahnke, R. A., and Craven, D. B., 1987, Organic carbon mineralization in the Santa Catalina Basin: Benthic boundary layer metabolism, Deep-Sea Res. 34:185–211.

    Article  CAS  Google Scholar 

  • Suess, E., 1980, Particulate organic carbon flux in the oceans—surface productivity and oxygen utilization, Nature 288:260–263.

    Article  CAS  Google Scholar 

  • Sverdrup, H. U., Johnson, M. W., and Fleming, R. H., 1942, The Oceans: Their Physics, Chemistry, and General Biology, Prentice-Hall, New York, 1060 pp.

    Google Scholar 

  • Taylor, E. C., 1982, Role of aerobic microbial populations in cellulose digestion by desert millipedes, Appl. Environ. Microbiol. 44:281–291.

    CAS  Google Scholar 

  • Thiel, H., 1983, Meiobenthos and nanobenthos of the deep sea, in: The Sea, Vol. 8, Deep-Sea Biology (G. T. Rowe, ed.), Wiley-Interscience, New York, pp. 167–230.

    Google Scholar 

  • Thistle, D., Yingst, J. Y., and Fauchald, K., 1985, A deep-sea benthic community exposed to strong near-bottom currents on the Scotian Rise (Western Atlantic), Mar. Geol. 66:91–112.

    Article  Google Scholar 

  • Tietjen, J. H., Deming, J. W., Rowe, G. T., Macko, S., and Wilke, R. J., 1989, Meiobenthos of the Hatteras Abyssal Plain and Puerto Rico Trench: Abundance and associations with bacteria and particulate fluxes, Deep-Sea Res. 36:1567–1577.

    Article  Google Scholar 

  • Toggweiler, J. R., 1990, Diving into the organic soup, Nature 345:203–204.

    Article  Google Scholar 

  • Turley, C. M., Lochte, K., and Patterson, D. J., 1988, A barophilic flagellate isolated from 4500 m in the mid-North Atlantic, Deep-Sea Res. 35:1079–1092.

    Article  Google Scholar 

  • U.S. GOFS Working Group, 1989, Sediment trap technology and sampling, U.S. Global Ocean Flux Study Planning Report Number 10 (G. Knauer and V. Asper, co-chairs), Woods Hole, Massachusetts, 94 pp.

    Google Scholar 

  • Val Klump, J., and Martens, C. S., 1983, Benthic nitrogen regeneration, in: Nitrogen in the Marine Environment (E. J. Carpenter and D. G. Capone, eds.), Academic Press, New York, pp. 411–457.

    Google Scholar 

  • Velji, M. I., and Albright, L. J., 1986, Microscopic enumeration of attached bacteria of seawater, marine sediment, fecal matter, and kelp blade samples following pyrophosphate and ultrasound treatments, Can. J. Microbiol. 32:121–126.

    Article  Google Scholar 

  • Vinogradov, M. E., 1968, Vertical Distribution of the Oceanic Zooplankton, Nauka, Moscow.

    Google Scholar 

  • Vitalis, T. Z., Spence, M. J., and Carefoot, T. H., 1988, The possible role of gut bacteria in nutrition and growth of the sea hare Aplysia, Veliger 30:333–341.

    Google Scholar 

  • Vonk, H. J., and Western, J. R. H., 1984, Comparative Biochemistry and Physiology of Enzymatic Digestion, Academic Press, London.

    Google Scholar 

  • Wakeham, S. G., Farrington, J., Gagosian, R. B., Lee, C., DeBaar, H., Nigerelli, G., Tripp, B., Smith, S., and Frew, N., 1980, Fluxes of organic matter from a sediment trap experiment in the equatorial Atlantic Ocean, Nature 286:798–800.

    Article  CAS  Google Scholar 

  • Walsh, J. J., Rowe, G. T., Iverson, R. L., and McRoy, C. P., 1981, Biological export of shelf carbon is a sink of the global CO2 cycle, Nature 291:196–201.

    Article  CAS  Google Scholar 

  • Walsh, I., Dymond, J., and Collier, R., 1988, Rates of recycling of biogenic components of settling particles in the ocean derived from sediment trap experiments, Deep-Sea Res. 35:43–58.

    Article  CAS  Google Scholar 

  • Westrich, J. T., and Berner, R. A., 1984, The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested, Limnol. Oceanogr. 29:236–249.

    Article  CAS  Google Scholar 

  • Wheatcroft, R. A., Jumars, P. A., Smith, C. R., and Nowell, A. R. M., 1990, A mechanistic view of the particulate biodiffusion coefficient: Step lengths, rest periods and transport directions, J. Mar. Res. 48:177–207.

    Article  Google Scholar 

  • Wiebe, W. J., 1979, Anaerobic benthic microbial processes: Changes from the estuary to the continental shelf, in: Ecological Processes in Coastal and Marine Systems (R. J. Livingston, ed.), Plenum Press, New York, pp. 469–485.

    Chapter  Google Scholar 

  • Wilke, R. J., Deming, J. W., Macko, S., Tietjen, J., Rowe, G., Stein, D., Fray, C., Khripounoff, A., Koshorek, D., Stepien, J., and Voras, B., 1985, Low-Level-Waste Ocean Disposal Project: R/V Iselin Cruise 19 June–10 July 1984, Data Report, Brookhaven National Laboratory Associated Universities, Inc., Upton, New York.

    Google Scholar 

  • Yayanos, A. A., 1986, Evolutionary and ecological implications of the properties of deep-sea barophilic bacteria, Proc. Natl. Acad. Sci. U.S.A. 83:9542–9546.

    Article  CAS  Google Scholar 

  • Yayanos, A. A., and DeLong, E. F., 1987, Deep-sea bacterial fitness to environmental temperatures and pressures, in: Current Perspectives in High Pressure Biology (H. W. Jannasch, R. E. Marquis, and A. M. Zimmerman, eds.), Academic Press, London, pp. 17–32.

    Google Scholar 

  • Yayanos, A. A., Dietz, A. S., and Van Boxtel, R., 1979, Isolation of a deep-sea barophilic bacterium and some of its growth characteristics, Science 205:808–810.

    Article  CAS  Google Scholar 

  • Yayanos, A. A., Dietz, A. S., and Van Boxtel, R., 1982, Dependence of reproduction rate on pressure as a hallmark of deep-sea bacteria, Appl. Environ. Microbiol. 44:1356–1361.

    CAS  Google Scholar 

  • Yingst, J. Y., and Rhoads, D. C., 1985, The structure of soft-bottom benthic communities in the vicinity of the Texas Flower Garden Banks, Gulf of Mexico, Estuarine Coastal Shelf Sci. 20:569–592.

    Article  Google Scholar 

  • Yokoe, Y., and Yasumasu, I., 1964, The distribution of cellulase in invertebrates, Comp. Biochem. Physiol. 13:323–338.

    Article  CAS  Google Scholar 

  • ZoBell, C. E., and Morita, R. Y., 1957, Barophilic bacteria in some deep-sea sediments, J. Bacteriol. 73:563–568.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Deming, J.W., Baross, J.A. (1993). The Early Diagenesis of Organic Matter: Bacterial Activity. In: Engel, M.H., Macko, S.A. (eds) Organic Geochemistry. Topics in Geobiology, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2890-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2890-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6252-4

  • Online ISBN: 978-1-4615-2890-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics