Skip to main content

Macromolecules from Living and Fossil Biominerals

Implications for the Establishment of Molecular Phylogenies

  • Chapter

Part of the book series: Topics in Geobiology ((TGBI,volume 11))

Abstract

The study of fossils as a means of establishing the geologic age and long-distance correlation of strata has been recognized as one of the most precise and reliable instruments of stratigraphy. Relatively rapid rates of evolution and easily fossilizable shells are two important elements which account for this fact. Two different invertebrate taxa whose stratigraphic utility has been extensively exploited are the microfossil foraminifera and the macrofossil mollusks. These taxa will be discussed in this chapter in terms of their application in molecular paleontology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abelson, P. H., 1955, Organic constituents of fossils, Carnegie Inst. Washington Yearb. 54:107–109.

    Google Scholar 

  • Abelson, P. H., 1956, Paleobiochemistry, Sci. Am. 195(1):.

    Article  Google Scholar 

  • Addadi, L., and Weiner, S., 1985, Interactions between acidic proteins and crystals: Stereochemical requirements in biomine-ralization, Proc. Natl. Acad. Sci. U.S.A. 82:4110–4114.

    Article  CAS  Google Scholar 

  • Akiyama, M., 1971, The amino acid composition of fossil scallop shell proteins and non-proteins, Biominer. Res. Rep. 3:65–70.

    CAS  Google Scholar 

  • Armstrong, W. G., Halstead, L. B., Reed, F. B., and Wood, L., 1983, Fossil proteins in vertebrate calcified tissue, Philos. Trans. R. Soc. London, Ser. B 301:301–343.

    Article  CAS  Google Scholar 

  • Biemann, K., 1988, Contributions of mass spectrometry to peptide and protein structure, Biomed. Environ. Mass Spectrom. 16: 99–111.

    Article  CAS  Google Scholar 

  • Collins, M. J., Curry, G. B., Quinn, R., Muyzer, G., Zomerdijk, T., and Westbroek, P., 1988, Sero-taxonomy of skeletal macromolecules in living terebratulid brachiopods, Hist. Biol. 1: 207–224.

    Google Scholar 

  • Collins, M., Curry, G., Muyzer, G., and Quinn, R., 1989, The prospects for molecular paleontology, Terra Abstracts 1:194.

    Google Scholar 

  • Cornish-Bowden, A., 1983, Relating proteins by amino acid composition, Methods Enzymol. 91:60–75.

    Article  CAS  Google Scholar 

  • Creighton, T. E., 1983, Proteins: Structures and Molecular Principles, W. H. Freeman and Co., New York.

    Google Scholar 

  • Crenshaw, M. A., 1972, The soluble matrix from Mercenaria mercenaria shell, Biomineralization 6:6–11.

    CAS  Google Scholar 

  • Curry, G., 1987a, Molecular palaeontology: New life for old molecules, Trends Ecol. Evol. 2:161–165.

    Article  CAS  Google Scholar 

  • Curry, G., 1987b, Molecular palaeontology, Geol. Today 1987(Jan.): 12–16.

    Google Scholar 

  • Curry, G., 1988, Molecular evolution and the fossil record, in: Short Courses in Paleontology, Vol. 1 (Thomas W. Broadhead, ed.), Paleontological Society, Knoxville, TN, pp. 20–33.

    Google Scholar 

  • de Jong, E. W., Westbroek, P., Westbroek, J. F., and Bruning, J. W., 1974, Preservation of antigenic properties in macromolecules over 70 Myr old, Nature 252:63–64.

    Article  Google Scholar 

  • Donachy, J. E., Drake, B., and Sikes, C. S., 1992, Sequence and atomic-force microscopy analysis of a matrix protein from the shell of the oyster Crassostrea virginica, Marine Biology 114:423–428.

    Article  CAS  Google Scholar 

  • Dungworth, G., Vincken, J. A., and Schwartz, A. W., 1975, Amino acid compositions of Pleistocene collagens, Comp. Biochem. Physiol. B 51:331–335.

    CAS  Google Scholar 

  • Elwood, H. J., Olsen, G. J., and Sogin, M. L., 1985, The small-subunit ribosomal RNA gene sequences from the hypotrichous ciliates Oxytricha nova and Stylonchia pustulosa, Mol. Biol. Evol. 2:399–410.

    CAS  Google Scholar 

  • Farris, J. S., 1972, Estimating phylogenetic trees from distance matrices, Am. Nat. 106:645–668.

    Article  Google Scholar 

  • Felsenstein, J., 1988, Phylogenies from molecular sequences: Inference and reliability, Annu. Rev. Genet. 22:521–566.

    Article  CAS  Google Scholar 

  • Fitch, W. M., and Margoliash, E., 1967, Construction of phylogenetic trees: A method based on mutational distances as estimated from cytochrome c sequences is of general applicability, Science 155:279–284.

    Article  CAS  Google Scholar 

  • Gillespie, J. M., 1970, Mammoth hair: Stability of α-keratin structure and constituent proteins, Science 170:.

    Google Scholar 

  • Goodman, J. W., 1980, Immunogenicity and antigenic specificity, in: Basic and Clinical Immunology (H. H. Fundenberg, D. P. Sites, J. L. Caldwell, and J. V. Wells, eds.), Lange Medical Publications, Los Altos, California, pp. 44–52.

    Google Scholar 

  • Hare, P. E., 1969, Organic geochemistry of proteins, peptides, and amino acids, in: Organic Geochemistry: Methods and Results (G. Eglinton and M. Murphy, eds.), Springer-Verlag, New York, pp. 438–463.

    Google Scholar 

  • Hare, P. E., Fogel, M. L., Stafford, T. W., Jr., Mitchell, A. D., and Hoering, T. C., 1991, The isotopic composition of carbon and nitrogen in individual amino acids isolated from modern and fossil proteins, J. Archaeol. Sci. 18:277–292.

    Article  Google Scholar 

  • Haugen, J.-E., Sejrup, H.-P., and Vogt, N. B., 1989, Chemotaxonomy of Quaternary benthic foraminifera using amino acids, J. Foraminiferal Res. 19(1):38–51.

    Article  Google Scholar 

  • Heinrickson, R. L., and Meridith, S. C., 1984, Amino acid analysis by reverse-phase high-performance liquid chromatography: Precolumn derivatization with phenylisothiocyanate, Anal. Biochem. 136:65–74.

    Article  Google Scholar 

  • Hemleben, C., Be, A., Anderson, O. R., and Tuntivate, S., 1977, Test morphology, organic layers, and chamber formation of the planktonic foraminifera Glohorotalia menardii (d’Orbigny), J. Foraminiferal Bes. 7:1–25.

    Article  Google Scholar 

  • Hemleben, C., Spindler, M., and Anderson, O. R., 1989, Modern Planktonic Foraminifera, Springer-Verlag, New York.

    Book  Google Scholar 

  • Hill, R. L., 1967, Hydrolysis of proteins, in: Advances in Protein Chemistry (C. B. Anfinsen, Jr., M. L. Anson, J. T. Edsall, and F. M. Richards, eds.), Academic Press, New York, pp. 37–107.

    Google Scholar 

  • Hoering, T. C., 1980, The organic constituents of fossil mollusc shells, in: Biogeochemistry of Amino Acids (P. E. Hare, T. C. Hoering, and K. King, Jr., eds.), John Wiley & Sons, New York, pp. 193–201.

    Google Scholar 

  • Jope, M., 1973, The protein of brachiopod shell—V. N. terminal end groups, Comp Biochem. Physiol. B 45:17–24.

    CAS  Google Scholar 

  • Jope, M., 1979, The protein of the brachiopod shell—VI. C-terminal end groups and sodium dodecylsulphate-polyacrylamide gel electrophoresis: Molecular constitution and structure of the protein, Comp. Biochem. Physiol. B 63:163–173.

    Google Scholar 

  • Joysey, K. A., and Friday, A. E. (eds.), 1982, Problems of Phylogenetic Reconstruction, Systematics Association Special Volume 21, Academic Press, New York.

    Google Scholar 

  • Kennett, J. P., 1976, Phenotypic variation in some Recent and Late Cenozoic planktonic foraminifera, in: Foraminifera, Vol. 2 (R. H. Hedley and C. D. Adams, eds.), Academic Press, London, pp. 111–169.

    Google Scholar 

  • Kimura, M., 1977, Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution, Nature 267:275–276.

    Article  CAS  Google Scholar 

  • King, K., Jr., and Hare, P. E., 1972, Amino acid composition of the test as a taxonomic character for living and fossil planktonic foraminifera, Micropaleontology 18:285–293.

    Article  CAS  Google Scholar 

  • Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibodies of pre-defined specificity, Nature 256:495–497.

    Article  Google Scholar 

  • Kramptiz, G., Drolshagen, H., Hausle, J., and HofIrmscher, K., 1983, Organic matrices of mollusc shells, in: Biomineralization and Biological Metal Accumulation (P. Westbroek and E. W. de-Jong, eds.), Reidel, Dordrecht, pp. 231–247.

    Chapter  Google Scholar 

  • Langer, M. R., Lipps, J. H., and Simison, W. B., 1992, Testing the molecular clock of evolution with planktic foraminifera, Abstract in American Geophysical Union EOS 73 (43, supplement):273.

    Google Scholar 

  • Lipps, J. H., Langer, M. R., Piller, W. E., Simison, W. B., Berbee, M., Lo Buglio, K., and Taylor, J., 1992, Molecular phylogeny of Foraminifera and Radiolaria Abstract, in American Geophysical Union EOS 73 (43, supplement):319.

    Google Scholar 

  • Lowenstam, H. A., and Weiner, S., 1989, On Biomineraiization, Oxford University Press, New York.

    Google Scholar 

  • Lowenstein, J., 1980a, Immunospecificity of fossil collagens, in: Biogeochemistry of Amino Acids (P. E. Hare, T. C. Hoering, and K. King, eds.), John Wiley & Sons, New York, pp. 41–51.

    Google Scholar 

  • Lowenstein, J. M., 1980b, Species-specific proteins in fossils, Naturwissenschaften 67:343–346.

    Article  CAS  Google Scholar 

  • Lowenstein, J. M., Sarich, V. M., and Richardson, B. J., 1981, Albumin systematics of the extinct mammoth and Tasmanian wolf, Nature 291:409–411.

    Article  CAS  Google Scholar 

  • Malmgren, G., and Kennett, J. P., 1972, Biometric analysis of Phenotypic variation of Globigerina pachyderma (Ehrenberg) in the S. Pacific Ocean, Micropaieontology 8(2):241–248.

    Article  Google Scholar 

  • Mann, S., 1988, Molecular recognition in biomineraiization, Nature 32:119–124.

    Article  Google Scholar 

  • Matter, P. F., Davidson, D., and Wyckoff, R. W. G., 1969, The composition of fossil oyster shell proteins, Proc. Natl. Acad. Sci. U.S.A. 64:970–972.

    Article  CAS  Google Scholar 

  • Mitterer, R. M., and Cunningham, R., Jr., 1985, The interaction of natural organic matter with grain surfaces: Implications for calcium carbonate precipitation, In Carbonate Cements (N. Schneidermann and P. M. Harris, eds.) Soc. Econ. Paleontol. Mineral. Spec. Publ. 36:17–31.

    Google Scholar 

  • Muyzer, G., 1988, Immunological approaches in geological research, Thesis, Leiden University, The Netherlands.

    Google Scholar 

  • Muyzer, G., and Westbroek, P., 1989, An immunohistochemical technique for the localization of preserved biopolymeric remains in fossils, Geochim. Cosmochim. Acta 53:1699–1702.

    Article  CAS  Google Scholar 

  • Muyzer, G., Westbroek, P., deVrind, J. P. M., Tanke, J., Vrijheid, T., de Jong, E. W., Bruning, J. W., and Wehmiller, J. F., 1984, Immunology and organic geochemistry, Org. Geochem. 6:847–855.

    Article  CAS  Google Scholar 

  • Muyzer, G., Westbroek, P., and Wehmiller, J. F., 1988, Phylogenetic implications and diagenetic stability of macromolecules from Pleistocene and Recent shells of Mercenaria mercenaria (Mollusca, Bivalva), Hist. Biol. 1:135–144.

    Google Scholar 

  • Nuttall, G. H. F., and Dinkelspiel, E. M., 1901, On the formation of specific anti-bodies in the blood following upon treatment with the sera of different animals, together with their use in legal medicine, J. Hyg. 1:357–387.

    Google Scholar 

  • Olsen, G. J., 1988, Phylogenetic analysis using ribosomal RNA, Methods Enzymol. 164:793–812.

    Article  CAS  Google Scholar 

  • Ostrom, P. H., Zonneveld, J.-P., and Robbins, L. L., Organic geochemistry of hard parts: Assessment of isotopic variability and indigeneity, Paiaeogeography, Paiaeoclimatoiogy, Palaeoecology, in press.

    Google Scholar 

  • Pääbo, S., 1989, Ancient DNA: Extraction, characterization, molecular cloning and enzymatic amplification, Proc. Natl. Acad. Sci. U.S.A. 86:1939–1943.

    Article  Google Scholar 

  • Penny, D., Foulds, L. R., and Hendy, M. D., 1982, Testing the theory of evolution by comparing phylogenetic trees constructed from five different protein sequences, Nature 297:197–200.

    Article  CAS  Google Scholar 

  • Prager, E. M., Wilson, A. C., Lowenstein, J. M., and Sarich, V. M., 1980, Mammoth albumin, Science 209:287–289.

    Article  CAS  Google Scholar 

  • Robbins, L. L., 1987, Morphologie variability and protein isolation and characterization of recent planktonic foraminifera, Ph.D. Dissertation, University of Miami.

    Google Scholar 

  • Robbins, L., 1988, Environmental significance of morphologie variability in open-ocean versus ocean-margin assemblages of Orbulina universa, J. Foraminiferal Res. 18(4):326–333.

    Article  Google Scholar 

  • Robbins, L., and Brew, K., 1990, Proteins from the organic matrix of Recent and fossil planktonic foraminifera, Geochim. Cosmochim. Acta 54:2285–2292.

    Article  CAS  Google Scholar 

  • Robbins, L. L., and Donachy, J., 1991, Mineralization regulating proteins in fossil planktonic foraminifera, in: Commodity Polypeptides (C. S. Sikes and A. P. Wheeler, eds.), ACS Books, Washington, D.C.

    Google Scholar 

  • Robbins, L. L., and Healy-Williams, N., 1991, Towards a classification of planktonic foraminifera based on biochemical, geochemical, and morphological criteria, J. Foraminiferal Res. 21(2):159–167.

    Article  Google Scholar 

  • Robbins, L. L., Toler, S. K., and Donachy, J. E., Immunological and biochemical analysis of shell matrix proteins in living and fossil foraminifera, Lethaia, in press.

    Google Scholar 

  • Runnegar, B., 1986, Molecular palaeontology, Palaeontology 29(1): 1–24.

    Google Scholar 

  • Rusenko, K. W., 1988, Studies on the structure and function of shell matrix proteins from the american oyster, Crassostrea virginica, Ph.D. Dissertation

    Google Scholar 

  • Schroeder, W. A., Shelton, J. R., Shelton, J. B., Cormick, J., and Jones, R. T., 1963, The amino acid sequence of the γ chain of human fetal hemoglobin, Biochemistry 2:992–1008.

    Article  CAS  Google Scholar 

  • Shively, J. E. (ed.), 1986, Methods of Protein Microcharacterization: A Practical Handbook, Humana Press, Clifton, New Jersey.

    Google Scholar 

  • Sikes, C. S., and Wheeler, A., 1983, A systematic approach to some fundamental questions of carbonate calcification, in: Biomineralization and Biological Metal Accumulation (P. Westbroek and E. W. de Jong, eds.), Reidel, Dordrecht, pp. 285–289.

    Chapter  Google Scholar 

  • Sikes, C. S., and Wheeler, A., 1986, The organic matrix from oyster shell as regulator of calcification in vivo, Biol. Bull. 170: 494–505.

    Article  CAS  Google Scholar 

  • Spicer, G. S., 1988, Molecular evolution among some Drosophila species groups as indicated by two-dimensional electrophoresis, J. Mol. Evol. 27:250–260.

    Article  CAS  Google Scholar 

  • Stathoplos, L., 1989, Amino acids in planktonic foraminiferal tests, Ph.D. Dissertation, University of Rhode Island.

    Google Scholar 

  • Tolan, D., Lambert, S. M., Boileau, G., Fanning, T. G., Kenny, J. W., Vassos, A., and Traut, R. R., 1980, Radioiodination of microgram quantities of ribosomal proteins from Polyacrylamide gels, Anal. Biochem. 103:101–109.

    Article  CAS  Google Scholar 

  • Toler, S. K., 1993, Characterization of shell soluble matrix proteins from six genera of Soritacea Foraminifera, M.S. Thesis, University of South Florida.

    Google Scholar 

  • Totten, D. K., Davidson, F. D., and Wyckoff, R. W. G., 1972, Amino acid composition of heated oyster shells, Proc. Natl. Acad. Sci. U.S.A. 69:784–785.

    Article  CAS  Google Scholar 

  • Towe, K. M., 1971, Lamellar wall construction in planktonic foraminifera, in: Proceedings of the IInd Planktonic Conference, Rome (A. Farinacci, ed.), pp. 1213–1218.

    Google Scholar 

  • Towe, K. M., 1980, Preserved organic ultrastructure: An unreliable indicator for Paleozoic amino acid biogeochemistry, in: Biogeochemistry of Amino Acids (P. E. Hare, T C. Hoering, and K. King, Jr., eds.), John Wiley & Sons, New York, pp. 65–74.

    Google Scholar 

  • Towe, K. M., and Cifelli, R., 1967, Wall structure in the calcareous foraminifera: Crystallographic aspects and a model for calcification, J. Paleontol. 41(3):742–762.

    Google Scholar 

  • Tuross, N., Fogel, M. L., and Hare, P. E., 1988, Variability in the preservation of isotopic composition of collagen from fossil bone, Geochim. Cosmochim. Acta 52:929–935.

    Article  CAS  Google Scholar 

  • Weiner, S., Lowenstam, H. A., Taborek, B. and Hood, L., 1979, Fossil mollusk shell organic matrix components preserved for 80 million years, Paleobiology 5:144–150.

    Google Scholar 

  • Weiner, S., 1982, Separation of acidic proteins from mineralized tissues by reversed phase high performance liquid chromatography, J. Chromatogr. 245:148–154.

    Article  CAS  Google Scholar 

  • Weiner, S., and Erez, J., 1984, Organic matrix of the shell of the foraminifer, Heterostegina depressa, J. Foraminiferal Res. 14(3):206–212.

    Article  Google Scholar 

  • Weiner, S., and Lowenstam, H. A., 1981, Well preserved fossil mollusk shells: Characterization of mild diagenetic processes, in: Biogeochemistry of Amino Acids (P. E. Hare, T. C. Hoering, and K. King, Jr., eds.), John Wiley & Sons, New York, pp. 95–119.

    Google Scholar 

  • Weiner, S., and Traub, W., 1984, Macromolecules in mollusc shells and their function in biomineralization, Philos. Trans. R. Soc. London, Ser. B 304:425–434.

    Article  CAS  Google Scholar 

  • Weiner, S., Traub, W., and Lowenstam, H., 1983, Organic matrix in calcified exoskeletons, in: Biomineralization and Biological Metal Accumulation (P. Westbroek and E. W. de Jong, eds.), Reidel, Dordrecht, pp. 205–224.

    Chapter  Google Scholar 

  • Westbroek, P. van der Meide, P. H., van der Wey-Kloppers, J. S., van der Sluis, R. J., de Leeuw, J. W., and de Jong, E. W., 1979, Fossil macromolecules from cephalopod shells: Characterization, immunological response and diagenesis, Paleobiology 5: 151–167.

    CAS  Google Scholar 

  • Wheeler, A. P., Rusenko, K. W., George, J. W., and Sikes, C. S., 1987, Evaluation of calcium binding by oyster shell soluble matrix and its role in biomineralization, Comp. Biochem. Physiol., B 87:953–960.

    Google Scholar 

  • Wheeler, A. P., Rusenko, K. W., Swift, D. M., and Sikes, C. S., 1988, Regulation of in vitro and in vivo CaCO3 crystallization by fractions of oyster shell organic matrix, Mar. Biol. 98:71–80.

    Article  CAS  Google Scholar 

  • Wilson, A. C., Carlson, S. S., and White, T. J., 1977, Biochemical evolution, Annu. Rev. Biochem. 45:573–639.

    Article  Google Scholar 

  • Wyckoff, R. W. G., 1972, The Biochemistry of Animal Fossils, Scientechnica, Bristol.

    Google Scholar 

  • Wyckoff, R. W. G., and Doberenz, A. R., 1965, Electron microscopy of Rancho La Brea bone, Proc. Natl. Acad. Sci. U.S.A. 53: 230–233.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robbins, L.L., Muyzer, G., Brew, K. (1993). Macromolecules from Living and Fossil Biominerals. In: Engel, M.H., Macko, S.A. (eds) Organic Geochemistry. Topics in Geobiology, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2890-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2890-6_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6252-4

  • Online ISBN: 978-1-4615-2890-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics