Skip to main content

Trace and Minor Elements in Coal

  • Chapter
Organic Geochemistry

Part of the book series: Topics in Geobiology ((TGBI,volume 11))

Abstract

Coal will be a major energy source in the United States and in many other countries well into the 21st century. Although coal is composed predominantly of organic matter, inorganic constituents in coal commonly attract more attention and can ultimately determine how the coal will be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alpern, B., and Morel, P., 1968, Examen, dans le cadre du bassin houiller lorrain, des possibilités stratigraphiques de la géochimie, Ann. Soc. Geol. Nord 88(4):185–202.

    Google Scholar 

  • Altschuler, Z. S., 1988, Evolution in forms of sulfur from peat to coal, Geological Society of America Abstracts with Programs, Vol. 20, No. 7, p. A90.

    Google Scholar 

  • Andrejko, M. J., and Cohen, A. D., 1984, Scanning electron micros copy of silicophytoliths from the Okefenokee swamp-marsh complex, in: The Okefenokee Swamp (A. D. Cohen, D. J. Casagrande, M. J. Andrejko, and G. R. Best, eds.), Wetland Survey, Los Alamos, New Mexico, pp. 468–491.

    Google Scholar 

  • Ayers, W. B., Jr., and Kaiser, W. R., 1984, Lacustrine-interdeltaic coal in the Fort Union Formation (Paleocene), Powder River Basin, Wyoming and Montana, U.S.A., in: Sedimentology of Coal and Coal-Bearing Sequences (R. A. Rahmani and R. M. Flores, eds.), Special Publication No. 7, International Association of Sedimentologists, Blackwell Scientific, Oxford, pp. 61–84.

    Google Scholar 

  • Bennett, P., and Siegel, D. I., 1987, Increased solubility of quartz in water due to complexing by organic compounds, Nature 326: 684–686.

    Article  CAS  Google Scholar 

  • Benson, S. A., Zygarlicke, C. J., Steadman, E. N., and Karner, F. R., 1992, Geochemistry of Fort Union lignite, in: Geology and Utilization of Fort Union Lignites (R. B. Finkelman, S. J. Tewalt, and D. J. Daly, eds.), Environmental and Coal Associates, Reston, Virginia, pp. 111–120.

    Google Scholar 

  • Bohor, B. F., Phillips, R. E., and Pollastro, R. M., 1979, Altered Volcanic Ash Partings in Wasatch Formation Coal Beds of the Northern Powder River Basin: Composition and Geologic Applications, U.S. Geological Survey Open-File Report 79-1203.

    Google Scholar 

  • Boon, D. Y., Munshower, F. F., and Fisher, S. E., 1987, Overburden chemistry: A review and update, in: Billings Symposium on Surface Mining and Reclamation in the Great Plains, American Society for Surface Mining and Reclamation, Reclamation Research Unit Report No. 8704, pp. A-1-1–A-1-18.

    Google Scholar 

  • Bouska, V., 1981, Geochemistry of Coal, Coal Science and Technology 1, Elsevier, Amsterdam.

    Google Scholar 

  • Burnet, G., 1986, Newer technologies for resource recovery from coal combustion solid wastes, Energy 11:1363–1375.

    Article  CAS  Google Scholar 

  • Butler, J. R., 1953, Geochemical Affinities of Some Coals from Svalbard, Nor. Polarinst. Skr. 96.

    Google Scholar 

  • Callcott, T. G., and Smith, G. B., 1981, Mechanical properties of coal, in: Chemistry of Coal Utilization, 2nd supplementary volume (M. A. Elliot, ed.), John Wiley & Sons, New York, pp. 285–315.

    Google Scholar 

  • Casagrande, D. J., 1987, Sulphur in peat and coal, in: Coal and Coal-Bearing Strata: Recent Advances (A. C. Scott, ed.), Geol. Soc. Spec. Publ. No. 32, pp. 87–105.

    Google Scholar 

  • Cebulak, S., 1983, Correlation of coal seams in the Central Coal Region of the Lublin Coal Basin, on the basis of geochemical data, Rozkowska Anna. Kwart. Geol. 27(l):25–39 [in Polish].

    CAS  Google Scholar 

  • Cecil, C. B., Stanton, R. W., Allshouse, S. D., and Finkelman, R. B., 1979, Interbed variation in and geologic controls on element concentrations in the Upper Freeport Coal, Abstracts of Papers, Fuel Chemistry Division, American Chemical Society and Chemical Society of Japan, Chemical Congress, Honolulu, Hawaii, Paper No. 48.

    Google Scholar 

  • Cecil, C. B., Stanton, R. W., Neuzil, S. G., Dulong, F. T., Ruppert, L. F., and Pierce, B. S., 1985, Paleoclimate controls on Late Paleozoic sedimentation and peat formation in the central Appalachian Basin (U.S.A.), Int. J. Coal Geol. 5:195–230.

    Article  Google Scholar 

  • Chandler, W. U., Makarov, A. A., and Dadi, Z., 1990, Energy for the Soviet Union, Eastern Europe and China, Sci. Am. 263(3): 121–127.

    Article  Google Scholar 

  • Chou, C.-L., 1984, Relationship between geochemistry of coal and the nature of strata overlying the Herrin coal in the Illinois Basin, U.S.A., Memoir of the Geological Society of China, No. 6, pp. 269–280.

    Google Scholar 

  • Cobb, J. C., Masters, J. M., Treworgy, C. G., and Helfinstine, R. J., 1979, Abundance and recovery of sphalerite and fine coal from mine waste in Illinois, Ill. State Geol. Surv. Ill. Miner. Note 71.

    Google Scholar 

  • Cobb, J. C., Steele, J. D., and Treworgy, C. G., 1980, The abundance of zinc and cadmium in sphalerite-bearing coals in Illinois, Ill. State Geol. Surv. Ill. Miner. Note 74.

    Google Scholar 

  • Crowley, S. S., Stanton, R. W., and Ryer, T. A., 1989, The effects of volcanic ash on the macerai and chemical composition of the C coal bed, Emery Coal Field, Utah, Org. Geochem. 14:315–331.

    Article  CAS  Google Scholar 

  • Daniels, E. J., Altaner, S. P., Marshak, S., and Eggleston, J., 1990, Hydrothermal alteration in anthracite from eastern Pennsylvania: Implications for mechanisms of anthracite formation, Geology 18:247–250.

    Article  Google Scholar 

  • Davis, R. E., and Dodge, K. A., 1986, Results of Experiments Related to Contact of Mine-Spoils Water with Coal, West Decker and Big Sky Mines, Southeastern Montana, U.S. Geological Survey Water-Resources Investigation Report 86-4002.

    Google Scholar 

  • Dreher, G. B., and Finkelman, R. B., 1992, Selenium mobilization in a surface coal mine, Powder River Basin, Wyoming, U.S.A., Environ. Geol. Water Sci. 19(3):115–167.

    Article  Google Scholar 

  • Dulong, F. T., Cecil, C. B., and Stanton, R. W., 1986, Regional and local variation of coal quality parameters in the Upper Freeport coal bed, western Pennsylvania, Geological Society of America Abstracts with Programs, Vol. 18, No. 6, p. 589.

    Google Scholar 

  • Duran, J. E., Mahasay, S. R., and Stock, L. M., 1986, The occurrence of elemental sulfur in coals, Fuel 65:1167–1168.

    Article  CAS  Google Scholar 

  • Falcon, R. M. S., 1978, Coal in South Africa, Part II: The application of petrography to the characterization of coal, Miner. Sci. Eng. 10(l):28–52.

    CAS  Google Scholar 

  • Finkelman, R. B., 1981a, Modes of Occurrence of Trace Elements in Coal, U.S. Geological Survey Open-File Report 81-99.

    Google Scholar 

  • Finkelman, R. B., 1981b, Recognition of authigenic and detrital minerals in coal, Geological Society of America Abstracts with Programs, Vol. 13, No. 7, p. 451.

    Google Scholar 

  • Finkelman, R. B., 1981c, The origin, occurrence, and distribution of the inorganic constituents in low-rank coals, in: Proceedings of the Basic Coal Science Workshop (H. H. Schobert, compiler), Grand Forks Energy Research Center, Grand Forks, North Dakota, pp. 70–90.

    Google Scholar 

  • Finkelman, R. B., 1982, Modes of occurrence of trace elements and minerals in coal: An analytical approach, in: Atomic and Nuclear Methods in Fossil Energy Research (R. H. Filby, B. S. Carpenter, and R. C. Ragaini, eds.), Plenum Press, New York, pp. 141–149.

    Chapter  Google Scholar 

  • Finkelman, R. B., 1985, Mode of occurrence of accessory sulfide and selenide minerals in coal, in: Neuvième Congrès International de Stratigraphie et de Géologie du Carbonifère, Compte Rendu, Vol. 4 (A. T. Cross, ed.), Southern Illinois University Press, Carbondale, Illinois, pp. 407–412.

    Google Scholar 

  • Finkelman, R. B., 1990, What we don’t know about the occurrence and distribution of trace elements in coal, J. Coal Qual. 8(3/4): 63–66.

    Google Scholar 

  • Finkelman, R. B., and Brown, R. D., Jr., 1989, Mineral resources and geochemical exploration potential of coal that has anomalous metal concentrations, in: USGS Research on Energy Resources— 1989 Program and Abstracts (K. S. Schindler, ed.), U.S. Geological Survey Circular 1035, pp. 18–19.

    Google Scholar 

  • Finkelman, R. B., and Brown, R. D., Jr., 1991, Coal as a host and as an indicator of mineral resources, in: Geology in Coal Resource Utilization (D. C. Peters, ed.), TechBooks, Fairfax, Virginia, pp. 471–481.

    Google Scholar 

  • Finkelman, R. B., and Dulong, F. T., 1989, Development and Evaluation of Deterministic Models for Predicting the Weights of Fouling Deposits from Coal Combustion, U.S. Geological Survey Open-File Report 89-208.

    Google Scholar 

  • Finkelman, R. B., Yeakel, J. D., and Harrison, W. J., 1987, Sodium in the Upper Cretaceous coal beds of the Wasatch Plateau, Utah: Mode of occurrence, geologic controls, possible source, and effects of coal utilization, Geological Society of America Abstracts with Programs, Vol. 19, No. 7, p. 663.

    Google Scholar 

  • Finkelman, R. B., Palmer, C. A., Krasnow, M. R., Aruscavage, P. J., Sellers, G. A., and Dulong, F. T., 1990, Combustion and leaching behavior of elements in the Argonne Premium Coal Samples, Energy Fuels 4:755–766.

    Article  CAS  Google Scholar 

  • Flores, R. M., and Hanley, J. H., 1984, Anastomosed and associated coal-bearing fluvial deposits: Upper Tongue River Member, Palaeocene Fort Union Formation, northern Powder River Basin, Wyoming, U.S.A., in: Sedimentology of Coal and Coal-Bearing Sequences (R. A. Rahmani and R. M. Flores, eds.), Int. Assoc. Sediment. Spec. Publ. No. 7, pp. 85–103.

    Google Scholar 

  • Gilmore, J. S., Knight, J. D., Orth, C. J., Pillmore, C. L., and Tschudy, R. H., 1984, Trace element patterns at a nonmarine Cretaceous-Tertiary boundary, Nature 307:224–228.

    Article  CAS  Google Scholar 

  • Given, P. H., and Yarzab, R. F., 1978, Analysis of the organic substance of coals: Problems posed by the presence of mineral matter, in: Analytical Methods for Coal and Coal Products, Vol. 2 (C. Karr, Jr., ed.), Academic Press, New York, pp. 3–41.

    Google Scholar 

  • Glick, D. C., and Davis, A., 1987, Variability in the inorganic element content of U.S. coals including results of cluster analysis, Org. Geochem. 11:331–342.

    Article  CAS  Google Scholar 

  • Gluskoter, H. J., and Lindahl, P. C., 1973, Cadmium: Mode of occurrence in Illinois coals, Science 181:264–266.

    Article  CAS  Google Scholar 

  • Gluskoter, H. J., Ruch, R. R., Miller, W. G., Cahill, R. A., Dreher, G. B., and Kuhn, J. K., 1977, Trace Elements in Coal: Occurrence and Distribution, Illinois State Geological Survey Circular 499.

    Google Scholar 

  • Goodarzi, F., 1987, Concentration of elements in lacustrine coals from zone A Hat Creek deposit No. 1, British Columbia, Canada, Int. J. Coal Geol. 8:247–268.

    Article  CAS  Google Scholar 

  • Goodarzi, F., 1988, Elemental distribution in coal seams at the Fording coal mine, British Columbia, Canada, Chem. Geol. 68: 129–154.

    Article  CAS  Google Scholar 

  • Gorham, E., and Santelmann, M. V., 1984, Peatland Bibliography, University of Minnesota Press, Minneapolis.

    Google Scholar 

  • Graham, J. W., 1907, The Destruction of Daylight, G. Allen, London.

    Google Scholar 

  • Guin, J. A., Tarder, A. R., Lee, J. M., Lo, L., and Curtis, C. W., 1979, Further studies of the catalytic activity of coal minerals in coal liquefaction: 1. Verification of catalytic activity of mineral matter by model compound studies, Ind. Eng. Chem. Process Des. Dev. 18(3):371–376.

    Article  CAS  Google Scholar 

  • Hart, R. J., and Leahy, R. M., 1983, The geochemical characterization of coal seams from the Witbank Basin, Spec. Publ. Geol. Soc. S. Afr. 7:169–174.

    Google Scholar 

  • Hatch, J. R., 1983, Geochemical processes that control minor and trace element composition of United States coals, in: Unconventional Mineral Deposits (W. C. Shanks, III, ed.), Society of Mining Engineers, New York, pp. 89–98.

    Google Scholar 

  • Hatch, J. R., Avcin, M. J., Wedge, W. K., and Brady, L. L., 1976a, Sphalerite in Coals from Southeastern Iowa, Missouri, and Southeastern Kansas, U.S. Geological Survey Open-File Report 76-796.

    Google Scholar 

  • Hatch, J. R., Gluskoter, H. J., and Lindahl, P. C., 1976b, Sphalerite in coals from the Illinois basin, Econ. Geol. 71:613–624.

    Google Scholar 

  • Helble, J. J., Srinivasachar, S., and Boni, A. A., 1990, A fundamental study of ash particle adhesion, in: Proceedings of the Seventh Annual International Pittsburgh Coal Conference, University of Pittsburgh, Pittsburgh, pp. 52–61.

    Google Scholar 

  • Honea, F. I., Montgomery, G. G., and Jones, M. L., 1982, Recent research on ash fouling in combustion of low rank coals, in: Technology and Use of Lignites, Vol. 1, Proceedings, Eleventh Biennial Lignite Symposium (W. R. Kube, E. A. Sondreal, and D. M. White, compilers), Grand Forks Energy Technology Center IC-82/1, Grand Forks, North Dakota, pp. 504–545.

    Google Scholar 

  • Jenkins, R. G., and Walker, P. L., Jr., 1978, Analysis of mineral matter in coal, in: Analytical Methods for Coal and Coal Products, Vol. 2 (C. Karr, Jr., ed.), Academic Press, New York, pp. 265–292.

    Google Scholar 

  • Jenny, W. P., 1903, The chemistry of ore-deposition, Am. Inst. Min. Eng. Trans. 33:445–498.

    Google Scholar 

  • Karner, F. R., Benson, S. A., Schobert, H. H., and Roaldson, R. G., 1984, Geochemical variation of inorganic constituents in a North Dakota lignite, in: The Chemistry of Low-Rank Coals (H. H. Schobert, ed.), ACS Symposium Series No. 264, American Chemical Society, Washington, D.C., pp. 175–193.

    Chapter  Google Scholar 

  • Keystone Coal Industry Manual, 1989, McGraw-Hill, New York.

    Google Scholar 

  • Kuellmer, F. J., Kendrick, D. T., and Baker, L., 1987, Trace Element Distributions in Some New Mexico Coals, New Mexico Research and Development Institute Report 2-74-4321.

    Google Scholar 

  • Lindahl, P. C., and Finkelman, R. B., 1986, Factors influencing major, minor, and trace element variations in U.S. coals, in: Mineral Matter and Ash in Coal (K. S. Vorres, ed.), ACS Symposium Series No. 301, American Chemical Society, Washington, D.C., pp. 61–69.

    Chapter  Google Scholar 

  • Lyons, P. C., Outerbridge, W F., Evans, Jr., H. T., and Triplehorn, D. M., 1990, Carboniferous (Westphalian) volcanic ash deposits, Appalachian Basin (U.S.A.), in: 13th International Sedimentological Congress, International Association of Sedimentologists, Utrecht, p. 320.

    Google Scholar 

  • McCarthy, T. S., Mclver, J. R., Cairncross, B., Ellery, W. N., and Ellery, K., 1989, The inorganic chemistry of peat from the Maunachia channel-swamp system, Okavango Delta, Botswana, Geochim. Cosmochim. Acta 53:1077–1089.

    Article  CAS  Google Scholar 

  • Miller, R. T., and Given, P. H., 1978, A Geochemical Study of the Inorganic Constituents in Some Low-Rank Coals, U.S. Department of Energy Report FE-2494-TR-1.

    Google Scholar 

  • Nichols, C. L., and D’Auria, J. M., 1981, Seam and location differentiation of coal specimens using trace element concentrations, Analyst 106:874–882.

    Article  CAS  Google Scholar 

  • Noble, E. A., 1973, Uranium in coal, in: Mineral and Water Resources of North Dakota, North Dakota Geological Survey Bulletin 63, pp. 80–83.

    Google Scholar 

  • O’Connor, J. T., 1988, The Campbell Creek/No. 2 Gas/Peerless/ Powellton coal bed correlation from the middle of the Kanawha Formation of the central Appalachian Basin, in: USGS Research on Energy Resources—1988 Program and Abstracts (L. M. H. Carter, ed.), U.S. Geological Survey Circular 1025, p. 39.

    Google Scholar 

  • O’Gorman, J. V., 1971, Studies on mineral matter and trace elements in North American coals, Ph.D. Dissertation, The Pennsylvania State University.

    Google Scholar 

  • Oman, C. L., Finkelman, R. B., Coleman, S. L., and Bragg, L. J., 1988, Selenium in coals from the Powder River Basin, Wyoming and Montana, in: USGS Research on Energy Resources—1988 Program and Abstracts (L. M. H. Carter, ed.), U.S. Geological Survey Circular 1025, pp. 16–17

    Google Scholar 

  • Pevear, D. R., Williams, V. E., and Mustoe, G. E., 1980, Kaolinite, smectite, and K-rectorite in bentonites: Relation to coal rank at Tulameen, British Columbia, Clays Clay Miner. 28(4):241–254.

    Article  CAS  Google Scholar 

  • Raymond, R., Jr., Bish, D. L., and Cohen, A. D., 1990, Inorganic contents of peats, in: Mineral Matter and Ash Deposition from Coal (R. W. Breyers and K. S. Vorres, eds.), Engineering Foundation Conference, New York, pp. 23–37.

    Google Scholar 

  • Reid, W. T., 1981, Coal ash—its effects on combustion systems, in: Chemistry of Coal Utilization, 2nd supplementary volume (M. A. Elliot, ed.). John Wiley & Sons, New York, pp. 1389–1445.

    Google Scholar 

  • Robbins, E. I., D’Agostino, J. P., Carter, V., Fanning, D. S., Gamble, C. J., Ostwald, J., Van Hoven, R. L., and Young, G. K., 1990a, Manganese nodules and microbial fixation of oxidized manganese in the Huntly Meadows wetland, Fairfax County, Virginia, U.S. Geol. Surv. Circ. 1060:69–70.

    Google Scholar 

  • Robbins, E. I., Zielinski, R. A., Otton, J. K., Owen, D. E., Schumann, R. R., and McKee, J. P., 1990b, Microbially mediated fixation of uranium, sulfur, and iron in a peat-forming montane wetland, Larimer County, Colorado, U.S. Geol. Surv. Circ. 1060:70–71.

    Google Scholar 

  • Roscoe, B. A., and Hopke, P. K., 1982, Analysis of mineral phases in coal utilizing factor analysis, in: Atomic and Nuclear Methods in Fossil Energy Research (R. H. Filby, ed.), Plenum Press, New York, pp. 163–174.

    Chapter  Google Scholar 

  • Schnable, R. W., 1975, Uranium, in: Mineral and Water Resources of South Dakota, Report prepared by the U.S. Geological Survey for the Committee on Interior and Insular Affairs, United States Senate, pp. 172–176.

    Google Scholar 

  • Severson, R. C., and Shacklette, H. T., 1988, Essential elements and soil amendments for plants: Sources and use for agriculture, U.S. Geol. Surv. Circ. 1017.

    Google Scholar 

  • Shepard, M., 1987, Toxic resources and the real world, EPRI J. 1987 (Sept):17–21.

    Google Scholar 

  • Swaine, D. J., 1983, Geological aspects of trace elements in coal, in: The Significance of Trace Elements in Solving Petrogenetic Problems and Controversies (S. S. Augustithis, ed.), Theophrastus Publications, Athens, pp. 521–532.

    Google Scholar 

  • Swaine, D. J., 1990, Trace Elements in Coal, Butterworths, London.

    Google Scholar 

  • Swanson, V. E., Medlin, J. H., Hatch, J. R., Coleman, S. L., Wood, G. H., Jr., Woodruff, S. D., and Hildebrand, R. T., 1976, Collection, chemical analysis, and evaluation of coal samples in 1975, U.S. Geological Survey Open-File Report 76-468.

    Google Scholar 

  • Triplehorn, D. M., and Finkelman, R. B., 1989, Replacement of glass shards by aluminum phosphates in a middle Pennsylvanian tonstein from eastern Kentucky, Geological Society of America Abstracts with Programs, Vol. 21, No. 6, p. PA 52.

    Google Scholar 

  • U.S. EPA, 1976, Quality Criteria for Water, U.S. Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • U.S. EPA, 1987, Wastes from the Combustion of Coal by Electric Utility Power Plants, U.S. Environmental Protection Agency Report to Congress, June 1987.

    Google Scholar 

  • U.S. National Committee for Geochemistry, 1980, Trace-Element Geochemistry of Coal Resource Development Related to Environmental Quality and Health, National Academy Press, Washington, D.C.

    Google Scholar 

  • Valkovic, V., 1983, Trace Elements in Coal, Vol. 1, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Wood, G. H., Jr., Kehn, T. M., Carter, M. D., and Culbertson, W. C., 1983, Coal resource classification system of the U.S. Geological Survey, U.S. Geol. Surv. Circ. 891.

    Google Scholar 

  • Zubovic, P., 1966, Minor element distribution in coal samples of the Interior coal province, in: Coal Science (R. F Gould, ed.), Advances in Chemistry Series No. 55, American Chemical Society, Washington, D.C., pp. 232–247.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Finkelman, R.B. (1993). Trace and Minor Elements in Coal. In: Engel, M.H., Macko, S.A. (eds) Organic Geochemistry. Topics in Geobiology, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2890-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2890-6_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6252-4

  • Online ISBN: 978-1-4615-2890-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics