Skip to main content

Laboratory Simulation of Petroleum Formation

Hydrous Pyrolysis

  • Chapter

Part of the book series: Topics in Geobiology ((TGBI,volume 11))

Abstract

The importance of water in laboratory experiments designed to simulate natural processes is well documented in the studies of granite melts (Goranson, 1931, 1932; Tuttle and Bowen, 1958), metamorphic reactions (Winkler, 1974, p. 15; Rumble et al., 1982; Ferry, 1983), and coal formation (Berl and Schmidt, 1932; Schuhmacher et al., 1960). Industrial processes also benefit from the presence of water as demonstrated in oil shale retorting (Gavin, 1922, p. 181), conversion of coal to oil (Fischer, 1925, p. 180), heavy oil upgrading (McCollum and Quick, 1976a, b), and conversion of organic refuse to oil (Appell et al., 1971, 1975). Prior to 1979, organic geochemists inadvertently ignored these observations and the ubiquity of water in sedimentary basins when considering the natural process of petroleum generation. A notable exception is the work reported by Jurg and Eisma in 1964. Noting differences in the thermal decomposition of behenic acid in the presence and absence of liquid water, these investigators suggested that water played an important role in petroleum generation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amestica, L. A., and Wolf, E. E., 1986, Catalytic liquefaction of coal with supercritical water/CO/solvent media, Fuel 65:1226.

    Article  CAS  Google Scholar 

  • Appell, H. R., Fu, Y. C., Friedman, S., Yavorsky, P. M., and Wender, I., 1971, Converting Organic Wastes to Oil: A Replenishable Energy Source, U.S. Department of the Interior, Bureau of Mines Rept. Invest. 7560.

    Google Scholar 

  • Appell, H. R., Fu, Y. C., Illig, E. G., Steffgen, F. W., and Miller, R. D., 1975, Conversion of Cellulosic Wastes to Oil, U.S. Department of the Interior, Bureau of Mines Rept. Invest. 8013.

    Google Scholar 

  • ASME, 1979, ASME Steam Tables—Thermodynamic and Transport Properties of Steam, American Society of Mechanical Engineers, New York.

    Google Scholar 

  • Berl, E., and Schmidt, A., 1932, Über die Entstehung der Kohlen, II. Die Inkohlung von Cellulose and Lignin in neutralem Medium, Ann. Chemie 493:97.

    Article  CAS  Google Scholar 

  • Bertrand, P., Martinez, L., and Pracher, B., 1987, Petrology Study of Primary Migration by Hydrous Pyrolysis, in: Migration of Hydrocarbons in Sedimentary Basins (B. Doligez, ed.), Editions Technip, Paris, pp. 633–647.

    Google Scholar 

  • Brooks, J. D., and Smith, J. W., 1969, The diagenesis of plant lipids during the formation of coal, petroleum, and natural gas—II. Coalification and the formation of oil and gas in the Gippsland Basin, Geochim. Cosmochim. Acta 33:1183.

    Article  CAS  Google Scholar 

  • Braun, R. L., and Rothman, A. J., 1975, Oil-shale pyrolysis: Kinetics and mechanisms of oil production, Fuel 54:129.

    Article  CAS  Google Scholar 

  • Burnham, A. K., Braum, R. L., Gregg, H. R., and Samoun, A. M., 1987a, Comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters, Energy Fuels 1:452.

    Article  CAS  Google Scholar 

  • Burnham, A. K., Braum, R. L., and Samoun, A., 1987b, Further Comparison of Methods for Measuring Kerogen Pyrolysis Rates and Fitting Kinetic Parameters, Lawrence Livermore National Laboratory, UCRL-97352.

    Google Scholar 

  • Claypool, G. E., and Reed, R. P., 1976, Thermal-analysis technique for source-rock evaluation: Quantitative estimate of organic richness and effects of lithology, Am. Assoc. Petrol. Geol. Bull. 60:608.

    Google Scholar 

  • Comet, P. A., McEvoy, J., Giger, W., and Douglas, A. G., 1986, Hydrous and anhydrous pyrolysis of DSDP Leg 75 kerogens— A comparative study using a biological marker approach, Org. Geochem. 9:171.

    Article  CAS  Google Scholar 

  • Dawidowicz, A. L., Nazimek, D., Pikus, S., and Skubiszewska, J., 1984, The influence of boron atoms on the surface of controlled porous glasses on the properties of the carbon deposit obtained by pyrolysis of alcohol, J. Anal. Appl. Pyrolysis 7:53.

    Article  CAS  Google Scholar 

  • Dawidowicz, A. L., Pikus, S., and Nazimek, D., 1986, Properties of the material surfaces obtained by pyrolysis of alkanols on boron-enriched controlled porous glasses, J. Anal. Appl. Pyrolysis 10:59.

    Article  CAS  Google Scholar 

  • Deshpande, G. V., Holder, G. D., Bishop, A. A., Gopal, J., and Wender, I., 1984, Extraction of coal using supercritical water, Fuel 63:956.

    Article  CAS  Google Scholar 

  • Eglinton, T. I., and Douglas, A. G., 1988, Quantitative study of biomarker hydrocarbons released from kerogens during hydrous pyrolysis, Energy Fuels 2:81.

    Article  CAS  Google Scholar 

  • Eglinton, T. I., Curtis, C. D., and Rowland, S. J., 1987, Generation of water-soluble organic acids from kerogen during hydrous pyrolysis: Implications for porosity development, Miner. Mag. 51:495.

    Article  CAS  Google Scholar 

  • Eglinton, T. I., Douglas, A. G., and Rowland, S. J., 1988, Release of aliphatic, aromatic, and sulfur compounds from Kimmeridge kerogen by hydrous pyrolysis: A quantitative study, Org. Geochem. 13:655.

    Article  CAS  Google Scholar 

  • Engler, K. O. V., 1913, Die Chemie und Physik des Erdöls, Vol. 1, S. Hirzel, Leipzig.

    Google Scholar 

  • Espitalié, J., Laporte, J. L., Madec, M., Marquis, F., Leplat, P., Paulet, J., and Boutefeu, A., 1977, Méthode rapide de caractérisation des roches mères de leur potential pétrolier et de leur degré d’évolution, Rev. Inst. Fr. Pet. 32:23.

    Google Scholar 

  • Ferry, J. M., 1983, Regional metamorphism of the Vassalboro Formation, south-central Maine, U.S.A.: A case study of the role of fluid in metamorphic pedogenesis, J. Geol. Soc. London 140:551.

    Article  CAS  Google Scholar 

  • Fischer, F., 1925, The Conversion of Coal into Oils, Ernest Benn Ltd., London.

    Google Scholar 

  • Franks, A. J., and Goodier, B. D., 1922, Preliminary study of the organic matter of Colorado Oil Shales, Quart. Colo. Sch. Mines 17:3.

    Google Scholar 

  • Gavin, M. J., 1922, Oil-shale: An historical, technical, and economic study, U.S. Department of the Interior, Bureau of Mines Bulletin 210, Bradford-Robinson, Denver.

    Google Scholar 

  • Goranson, R. W., 1931, The solubility of water in granite magmas, Am. J. Sci. 22:481.

    Article  CAS  Google Scholar 

  • Goranson, R. W., 1932, Some notes on the melting of granite, Am. J. Sci. 23:227.

    Article  CAS  Google Scholar 

  • Haas, J. L., Jr., 1976, Thermodynamical properties of the NaCl component in boiling NaCl solutions, U.S. Geological Survey Bulletin 1421-B.

    Google Scholar 

  • Harwood, R. J., 1977, Oil and gas generation by laboratory pyrolysis of kerogen, Am. Assoc. Petrol. Geol. Bull. 61:2082.

    CAS  Google Scholar 

  • Hoering, T. C., 1977, Olefinic hydrocarbons in Bradford, Pennsylvania, crude oil, Chem. Geol. 20:1.

    Article  CAS  Google Scholar 

  • Hoering, T. C., 1985, Thermal reactions of kerogen with added water, heavy water, and pure organic substances, Org. Geo-chem. 5:267.

    Article  Google Scholar 

  • Houser, T. J., Tiffany, D. M., Li, Z., McCarville, M. E., and Houghton, M. E., 1986, Reactivity of some organic compounds with supercritical water, Fuel 65:827.

    Article  CAS  Google Scholar 

  • Hubbard, A. B., and Robinson, W. E., 1950, A Thermal Decomposition Study of Colorado Oil Shale, U.S. Department of the Interior, Bureau of Mines Rept. Invest. 4744.

    Google Scholar 

  • Huizinga, B. J., Tannenbaum, E., and Kaplan, I. R., 1987, The role of minerals in the thermal alteration of organic matter—IV. Generation of n-alkanes, acyclic isoprenoids, and alkenes in laboratory experiments, Geochim. Cosmochim. Acta 51:1083.

    Article  CAS  Google Scholar 

  • Hunt, J. M., 1979, Petroleum Geochemistry and Geology, W. H. Freeman and Co., San Francisco.

    Google Scholar 

  • Jones, M., Douglas, A. G., and Connan, J., 1987, Hydrocarbon distributions in crude oil asphaltene pyrolyzates. 1. Aliphatic compounds, Energy Fuels 1:468.

    Article  CAS  Google Scholar 

  • Jurg, J. W., and Eisma, E., 1964, Petroleum hydrocarbons: Generation from fatty acid, Science 144:1451.

    Article  CAS  Google Scholar 

  • King, R. J., 1983, Steel, in: Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 21, John Wiley & Sons, New York, pp. 552–625.

    Google Scholar 

  • Kisch, H. J., 1987, Correlation between indicators of very low-grade metamorphism, in: Low Temperature Metamorphism (M. Frey, ed.), Blackie, Glasgow, pp. 227–300.

    Google Scholar 

  • Larter, S. R., and Douglas, A. G., 1980, A pyrolysis-gas chromatographic method for kerogen typing, in: Advances in Organic Geochemistry 1979 (A. G. Douglas and J. R. Maxwell, eds.), Pergamon Press, Oxford, pp. 579–584.

    Google Scholar 

  • Larter, S. R., and Senftle, J. T., 1985, Improved kerogen typing for petroleum source rock analysis, Nature 318:277.

    Article  CAS  Google Scholar 

  • Larter, S. R., Horsfield, B., and Douglas, A. G., 1977, Pyrolysis as a possible means of determining petroleum generating potential of sedimentary organic matter, in: Analytical Pyrolysis (C. E. R. Jones and C. A. Cramers, eds.), Elsevier, Amsterdam, pp. 189–202.

    Chapter  Google Scholar 

  • Lewan, M. D., 1978, Laboratory classification of very fine-grained sedimentary rocks, Geology 6:745.

    Article  CAS  Google Scholar 

  • Lewan, M. D., 1983, Effects of thermal maturation on stable organic carbon isotopes as determined by hydrous pyrolysis of Woodford Shale, Geochim. Cosmochim. Acta 47:1471.

    Article  CAS  Google Scholar 

  • Lewan, M. D., 1985, Evaluation of petroleum generation by hydrous pyrolysis experimentation, Philos. Trans. R. Soc. London Ser. A 315:123.

    Article  CAS  Google Scholar 

  • Lewan, M. D., 1987, Petrographic study of primary petroleum migration in the Woodford Shale and related rock units, in: Migration of Hydrocarbons in Sedimentary Basins (B. Doligez, ed.), Editions Technip, Paris, pp. 113–130.

    Google Scholar 

  • Lewan, M. D., and Buchardt, B., 1989, Irradiation of organic matter by uranium decay in the Alum Shale, Sweden, Geochim. Cosmochim. Acta 53:1307.

    Article  CAS  Google Scholar 

  • Lewan, M. D., and Williams, M. D., 1987, Evaluation of petroleum generation from resinites by hydrous pyrolysis, Am. Assoc. Petrol Geol. Bull. 71:207.

    CAS  Google Scholar 

  • Lewan, M. D., Winters, J. C., and McDonald, J. H., 1979, Generation of oil-like pyrolyzates from organic-rich shales, Science 203:897.

    Article  CAS  Google Scholar 

  • Lewan, M. D., Bjorøy, M., and Dolcater, D. L., 1986, Effects of thermal maturation on steroid hydrocarbons as determined by hydrous pyrolysis of Phosphoria Retort Shale, Geochim. Cosmochim. Acta 50:1977.

    Article  CAS  Google Scholar 

  • Louis, M. C., and Tissot, B. P., 1967, Influence de la température et de la pression sur la formation des hydrocarbures dans les argiles à kérogen, Proceedings of the 7th World Petroleum Congress, Vol. 2, Elsevier, Amsterdam, p. 47.

    Google Scholar 

  • Lundegard, P. D., and Senftle, J. T., 1987, Hydrous pyrolysis: A tool for the study of organic acid synthesis, Appl. Geochem. 2:605.

    Article  CAS  Google Scholar 

  • McCollum, J. D., and Quick, L. M., 1976a, Process for upgrading a hydrocarbon fraction, U.S. Patent 3,960,708.

    Google Scholar 

  • McCollum, J. D., and Quick, L. M., 1976b, Process for upgrading a hydrocarbon fraction, U.S. Patent 3,989,618.

    Google Scholar 

  • McKee, R. H., and Lyder, E. E., 1921, The thermal decomposition of shales. I—Heat effects, J. Ind. Eng. Chem. 13:613.

    Article  CAS  Google Scholar 

  • Meissner, F. F., 1978, Petroleum geology of the Bakken Formation, Williston Basin, in: Williston Basin Symposium, Montana Geological Society 24th Annual Conference, pp. 207–227.

    Google Scholar 

  • Monthioux, M., 1988, Expected mechanisms in nature and in confined-system pyrolysis, Fuel 67:843.

    Article  CAS  Google Scholar 

  • Monthioux, M., Landais, P., and Monin, J.-C., 1985, Comparison between natural and artificial maturation series of humic coals from the Mahakam delta, Indonesia, Org. Geochem. 8:275.

    Article  CAS  Google Scholar 

  • Murakami, K., Yokono, T., and Sanada, Y., 1986, An investigation of the role of hydrogen sulfide in coal liquefaction catalysis by high-temperature and high-pressure e.s.r., Fuel 65:1079.

    Article  CAS  Google Scholar 

  • Palmer, D. A., and Drummond, S. E., 1986, Thermal decarboxylation of acetate. Part I. The kinetics and mechanism of reaction in aqueous solution, Geochim. Cosmochim. Acta 50:813.

    Article  CAS  Google Scholar 

  • Pollard, D. D., and Aydin, A., 1988, Progress in understanding jointing over the past century, Geol. Soc. Am. Bull. 100:1181.

    Article  Google Scholar 

  • Rullkötter, J., Aizenshtat, Z., and Spiro, B., 1984, Biological markers in bitumens and pyrolzates of Upper Cretaceous bituminous chalks from the Ghareb Formation (Israel), Geochim. Cosmochim. Acta 48:151.

    Article  Google Scholar 

  • Rumble, D., III, Ferry, J. M., Hoering, T. C., and Boucot, A. J., 1982, Fluid flow during metamorphism at the Beaver Brook fossil locality, New Hampshire, Am. J. Sci. 282:886.

    Article  CAS  Google Scholar 

  • Saxby, J. D., and Riley, K. W., 1984, Petroleum generation by laboratory scale pyrolysis over six years simulating conditions in a subsiding basin, Nature 308:177.

    Article  CAS  Google Scholar 

  • Saxby, J. D., Bennett, A. J. R., Corcoran, J. F., Lambert, D. E., and Riley, K. W., 1986, Petroleum generation: Simulation over six years of hydrocarbon formation from torbanite and brown coal in a subsiding basin, Org. Geochem. 9:69.

    Article  CAS  Google Scholar 

  • Schuhmacher, J. P., Huntjens, F. J., and van Krevelen, D. W., 1960, Chemical structure and properties of coal XXVI. Studies on artificial coalification, Fuel 39:223.

    CAS  Google Scholar 

  • Soldan, A. L., and Cerqueira, J. R., 1986, Effects of thermal maturation on geochemical parameters obtained by simulated generation of hydrocarbons, Org. Geochem. 10:339.

    Article  CAS  Google Scholar 

  • Sourirajan, S., and Kennedy, G. C., 1962, The system H2O-NaCl at elevated temperatures and pressures, Am. J. Sci. 260:115.

    Article  CAS  Google Scholar 

  • Srinivasan, G., and Seehra, M. S., 1982, Changes in free radicals in coal-derived pyrites upon heating in N2, H2, and vacuum: Role of pyrite-pyrrhotite conversion, Fuel 61:1249.

    Article  CAS  Google Scholar 

  • Srinivasan, G., and Seehra, M. S., 1983, Effects of pyrite and pyrrhotite on free radical formation in coal, Fuel 62:792.

    Article  CAS  Google Scholar 

  • Stanley, J. K., 1970, The carburization of four austenitic stainless steels, J. Matter 5:957.

    CAS  Google Scholar 

  • Takenouchi, S., and Kennedy, G. C., 1964, The binary system H2O-CO2 at high temperatures and pressures, Am. J. Sci. 262:1055

    Article  CAS  Google Scholar 

  • Talukdar, S., Gallango, O., Vallejas, C., and Ruggiero, A., 1987, Observations on the primary migration of oil in the LaLuna Source rocks of the Marracaibo Basin, Venezuela, in: Migration of Hydrocarbons in Sedimentary Basis (B. Doligez, ed.), Editions Technip, Paris, pp. 59–77.

    Google Scholar 

  • Tannenbaum, E., and Kaplan, I. R., 1985a, Role of minerals in the thermal alteration of organic matter—I: Generation of gases and condensates under dry conditions, Geochim. Cosmochim. Acta 49:2589.

    Article  CAS  Google Scholar 

  • Tannenbaum, E., and Kaplan, I. R., 1985b, Low-Mr hydrocarbons generated during hydrous and dry pyrolysis of Kerogen, Nature 317:708

    Article  CAS  Google Scholar 

  • Tannenbaum, E., Huizinga, B. J., and Kaplan, I. R., 1986 Role of minerals in thermal alteration of organic matter—II: A material balance, Am. Assoc. Petrol. Geol. Bull. 70:1156.

    CAS  Google Scholar 

  • Tissot, B. P., and Welte, D. H., 1978, Petroleum Formation and Occurrence, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Tissot, B., Durand, B., Espitalié, J., and Combaz, A., 1974, Influence of nature and diagenesis of organic matter in formation of petroleum, Am. Assoc. Petrol. Geol. Bull. 58:499.

    CAS  Google Scholar 

  • Tuttle, O. F., and Bowen, N. L., 1958, Origin of granite in the light of experimental studies in the system NaAl Si3O8-KAlSi3O8-SiO2-H2O, Geol. Soc. Am. Mem. 7474.

    Google Scholar 

  • Winkler, H. G. F., 1974, Petrogenesis of Metamorphic Rocks, 3rd ed., Springer-Verlag, New York.

    Book  Google Scholar 

  • Winters, J. C., Williams, J. A., and Lewan, M. D., 1983, A laboratory study of petroleum generation by hydrous pyrolysis, in: Advances in Organic Geochemistry 1981 (M. Bjorøy, ed.), John Wiley & Sons, New York, pp. 524–533.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lewan, M.D. (1993). Laboratory Simulation of Petroleum Formation. In: Engel, M.H., Macko, S.A. (eds) Organic Geochemistry. Topics in Geobiology, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2890-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2890-6_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6252-4

  • Online ISBN: 978-1-4615-2890-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics