Skip to main content

Analysis of Structure-Activity Relationships of the Bowman-Birk Inhibitor of Serine Proteinases

Toward a Rational Design of New Cancer Chemopreventive Agents

  • Chapter
Protease Inhibitors as Cancer Chemopreventive Agents

Abstract

Proteinase inhibitors are a class of the various dietary inhibitors of mutagenesis and carcinogenesis (Hayatsu et al., 1988). Schelp and Pongpaew (1988) have recently hypothesized that protection against cancer may result from an increase of endogenous proteinase inhibitors such as α2-macroglobulin induced by diets that are low in calories and fat. The Bowman-Birk inhibitor (BBI) of serine proteinases, a double-headed polypeptide-inhibitor of trypsin and chymotrypsin, is one of the most potent cancer chemopreventive agents (Yavelow et al., 1983, 1985). Recently, this property has been substantiated in an in vivo investigation using mice (St. Clair et al., 1990) that were exposed to dimethylhydrazine, a potent chemical carcinogen. Therefore, BBI is currently being considered as an attractive candidate for studies directed toward the prevention of several forms of cancer that are widespread in Western societies. BBI is a small single-chain polypeptide of 71 amino acids with two subdomains directed toward trypsin and chymotrypsin/elastase, respectively (Fig. 1). This protein is the prototype of a family of proteinase inhibitors occurring in legumes. The three-dimensional structure of several BBI-type proteinase inhibitors in the free form (Suzuki et al., 1987; Chen et al., 1992) and complexed with trypsin (Tsunogae et al., 1986) were published recently. The structure of BBI in solution has been determined by NMR spectroscopy (Werner and Wemmer, 1991, 1992). The inhibitory subdomains of BBI are rigidified into a polycyclic, clearly arranged and highly conserved structural framework. BBI-type proteinase inhibitors fulfill many of the criteria of an attractive model for protein engineering studies (Fersht, 1985). Presently, major efforts are devoted to the pathophysiological elucidation and pathobiochemical characterization of the role of limited proteolysis in the course of malignant transformation. However, these efforts will eventually culminate in the rational design of specific chemical agents directed toward those proteolytic enzymes that are involved in malignant transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Flecker, P. (1993). Analysis of Structure-Activity Relationships of the Bowman-Birk Inhibitor of Serine Proteinases. In: Troll, W., Kennedy, A.R. (eds) Protease Inhibitors as Cancer Chemopreventive Agents. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2882-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2882-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6249-4

  • Online ISBN: 978-1-4615-2882-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics