Advertisement

Protease Inhibitor Synthesis by MCF-7 Breast Cancer Cells

  • Thomas H. Finlay
  • Susan S. Kadner
  • Snait Tamir

Abstract

It is well established that proteolytic enzymes play a significant role in the expression of the malignant phenotype including the loss of growth regulation, invasiveness, and formation of metastases (Liotta et al., 1991). Tumor cellderived proteases have multiple activities and have been shown to degrade basement membrane components, stimulate angiogenesis, and promote tumor cell proliferation and migration. Tumor cells may also be responsible for the elaboration of proteolytic enzymes by host cells such as the endothelium, stroma, or components of the immune system. Studies using an in vitro amnion invasion assay, shown to provide a rigorous test for tumor cell invasion in vivo (Yagel et al., 1989), suggest the involvement of a protease cascade in the invasion process. Although there is some controversy regarding the specific proteases participating in the cascade, plasminogen activator, plasmin, stromelysin, type IV collagenase, and interstitial collagenase appear to be important (Ostrowski et al., 1986; Persky et al., 1986; Whitham et al., 1986; Mignatti et al., 1987; Strous et al., 1988). Tissue-type plasminogen activator has been identified in breast cancer cytosol and its concentration may be of some prognostic significance (Duffy et al., 1988). There is also a large body of evidence suggesting that metastasis is facilitated by thrombus formation (Saito et al., 1980; Gasic et al., 1983). Tumor cells have been shown to induce platelet aggregation through the generation of thrombin and a specific membrane protein responsible for thrombin generation has been isolated from several tumor cell lines (Cavanaugh et al., 1988).

Keywords

Breast Cancer Cell Human Breast Cancer Cell Corticosteroid Binding Globulin Human Intestinal Epithelial Cell Line Plasma Proteinase Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, C. R., and Potter, H., 1989, The protease inhibitor, αl-antichymotrypsin, is a component of the brain amyloid deposits in normal aging and Alzheimer’s disease, Ann. Med. 21:77–81.PubMedCrossRefGoogle Scholar
  2. Andus, T., Geiger, T., Hirano, T., Kishimoto, T., and Heinrich, P. C., 1988a, Action of human interleukin 6, interleukin Iα and tumor necrosis factor on the mRNA induction of acute-phase proteins, Eur. J. Immunol. 18:739–746.PubMedCrossRefGoogle Scholar
  3. Andus, T., Geiger, T., Hirano, T., Kishimoto, T., Tran-Thi, T. A., Decker, K., and Heinrich, P. C., 1988b, Regulation of synthesis and secretion of major rat acute-phase proteins by recombinant human interleukin-6 (BSF-2/IL-6) in hepatocyte primary cultures, Eur. J. Biochem. 173:287–293.PubMedCrossRefGoogle Scholar
  4. Angle, P., Baumann, I., Stein, B., Delius, H., Rahmsdorf, H. J., and Herrlich, P., 1987, 12-o-tetradecanoyl-phorbol-13-acetate (TPA) induction of the human collagenase gene is mediated by an inducible enhancer element located in the 5′-flanking region, Mol. Cell. Biol. 7:2256–2266.Google Scholar
  5. Anklesaria, P., Texido, J., Laiho, M., Pierce, J. H., Greenberger, J. S., and Massague, J., 1990, Cell-cell adhesion mediated by binding of membrane-anchored transforming growth factor α to epidermal growth factor receptors promotes cell proliferation, Proc. Natl. Acad. Sci. USA 87:3289–3293.PubMedCrossRefGoogle Scholar
  6. Arteaga, C. L., Coronado, E., and Osborne, C. K., 1988, Blockade of the epidermal growth factor receptor inhibits transforming growth α-induced but not estrogen-induced growth of hormone-dependent human breast cancer, Mol. Endocrinol. 2:1064–1069.PubMedCrossRefGoogle Scholar
  7. Bao, J. J., Sifers, R. N., Kidd, V. J., Ledley, F. D., and Woo, S. L., 1987, Molecular evolution of serpins: Homologous structure of the human alpha 1-antichymotrypsin and alpha 1-antitrypsin genes, Biochemistry 26:7755–7759.PubMedCrossRefGoogle Scholar
  8. Bates, S. E., Davidson, N. E., Valverius, E. M., Dickson, R. B., Kudlow, J. E., Freter, C., Tarn, J. P., Lippmann, M. E., and Salamon, D. S., 1988, Expression of transforming growth factor alpha and its messenger ribonucleic acid in human breast cancer: Its regulation by estrogen and its possible functional significance, Mol. Endocrinol. 2:543–545.PubMedCrossRefGoogle Scholar
  9. Beatty, K., Robertie, P., Senior, R. M., and Travis, J., 1982. Determination of oxidized alpha-1-proteinase inhibitor in serum, J. Lab. Clin. Med. 100:186–192.PubMedGoogle Scholar
  10. Bergman, D., Kadner, S. S., Chan, Y., Dowling, V., Esterman, A., Young, B. K., and Finlay, T. H., 1991, Synthesis of α1-antichymotrypsin and α1-antitrypsin by human trophoblast cells, Abstract #358, Presented at the 38th Annual Meeting of the Society for Gynecologic Investigation, San Antonio, Tex.Google Scholar
  11. Billings, P. C., St. Clair, W., Ryan, C. A., and Kennedy, A. R., 1987, Inhibition of radiation-induced transformation of C3H/ 10T1/2 cells by chymotrypsin inhibitor from potatoes, Carcinogenesis 8:809–812.PubMedCrossRefGoogle Scholar
  12. Black, L. J., Jones, C. D., and Falcone, J. F., 1983, Antagonism of estrogen action with a new benzothiophene derived antiestrogen, Life Sci. 32:1031–1036.PubMedCrossRefGoogle Scholar
  13. Bories, D., Raynal, M. C., Solomon, D. H., Darzynkiewicz, Z., and Cayre, Y. E., 1989, Down regulation of a serine protease, myeloblastin, causes growth arrest and differentiation of pro-myelocytic leukemia cells, Cell 59:959–968.PubMedCrossRefGoogle Scholar
  14. Bringman, T. S., Lindquist, P. B., and Derynck, R., 1987, Different transforming growth factor-α species are derived from a glycosylated and palmitoylated transmembrane precursor, Cell 48:429–440.PubMedCrossRefGoogle Scholar
  15. Brown, M., and Sharp, P. A., 1990, Human estrogen receptor forms multiple protein-DNA complexes, J. Biol. Chem. 265:11238–11243.PubMedGoogle Scholar
  16. Carlson, J. A., Rogers, B. B., Sifers, R. N., Hawkins, H. K., Finegold, M. J., and Woo, S. L. C., 1988, Multiple tissues express alpha 1-antitrypsin in transgenic mice and man, J. Clin. Invest. 82:26–36.PubMedCrossRefGoogle Scholar
  17. Castell, J. V., Gomez-Lechon, M. J., David, M., Andus, T., Geiger, T., Trullenque, R., Fabra, R., and Heinrich, P. C., 1989, Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes, FEBS Lett. 242:237–239.PubMedCrossRefGoogle Scholar
  18. Cavanaugh, P. G., Sloane, B. F., and Honn, K. V., 1988, The role of the coagulation system in tumor cell induced platelet aggregation and metastasis, Hemostasis 18:37–46.Google Scholar
  19. Chamber, B. A., 1986, Present status and future prospects for treatment of metastatic cancer, in: Mechanisms of Cancer Metastasis: Potential Therapeutic Implications (K. V. Honn, W. E. Powers, and B. F. Sloane, eds.), Nijhoff, The Hague, pp. 15–22.Google Scholar
  20. Clarke, R., Brunner, N., Katz, D., Glanz, P., Dickson, R. B., Lippman, M. E., and Kern, F. G., 1989, The effects of a constitutive expression of transforming growth factor-α on the growth of MCF-7 human breast cancer cells in vitro and in vivo, Mol. Endocrinol. 3:372–380.PubMedCrossRefGoogle Scholar
  21. Couritois, G., Morgan, J. G., Campbell, L. A., Fourel, G., and Crabtree, G. R., 1987, Interaction of a liver-specific nuclear factor with the fibrinogen and α1,-antitrypsin promoters, Science 238:688–692.CrossRefGoogle Scholar
  22. DeLeon, D. D., Bakker, B., Wilson, D. M., Lamson, G., and Rosenfeld, R. G., 1990, Insulin-like growth factor binding proteins in human breast cancer cells: Relationship to hlGFBP-2 and hlGFBP-3, J. Clin. Endocrinol. Metab. 71:503–532.Google Scholar
  23. Derynck, R., 1988, Transforming growth factor α, Cell 54:593–595.PubMedCrossRefGoogle Scholar
  24. Dickson, R. B., and Lippman, M. E., 1987, Estrogenic regulation of growth and polypeptide growth factor secretion in human breast carcinoma, Endocr. Rev. 8:29–43.PubMedCrossRefGoogle Scholar
  25. DiMarco, E., Pierce, J. H., Fleming, T. P., Kraus, M. H., Molloy, C. J., Aaronson, S. A., and DiFiore, P. P., 1989, Autocrine interaction between TGFα and the EGF-receptor: Quantitative requirements for induction of the malignant phenotype, Oncogene 4:831–838.Google Scholar
  26. Duffy, M. J., O’Grady, P., and O’Siorain, 1988, Plasminogen activator. A new marker in breast cancer, in: Progress in Cancer Research and Therapy 3, Volume 35 (F. Brescani, R. J. B. King, M. E. Lippman, and D. L. Page, eds.), Raven Press, New York, pp. 300–303.Google Scholar
  27. Finlay, T. H., Katz, J., Rasums, A., Seiler, S., and Levitz, M., 1981, Estrogen-stimulated uptake of αl-protease inhibitor and other plasma proteins by the mouse uterus, Endocrinology 108:2129–2136.PubMedCrossRefGoogle Scholar
  28. Frain, M., Swart, G., Monaci, P., Nicosia, A., Stampfli, S., Rainer, F., and Cortese, R., 1989, The liver-specific transcription factor LF-B1 contains a highly diverged homeobox DNA binding domain, Cell 59:145–157.PubMedCrossRefGoogle Scholar
  29. Friedman, M., (ed.), 1986, Nutritional and Toxicological Significance of Enzyme Inhibitors in Foods, Plenum Press, New York.Google Scholar
  30. Fuchs, H. E., Michalopouls, G. K., and Pizzo, V. S., 1984, Hepatocyte uptake of αl-proteinase inhibitor-trypsin complexes in vitro: Evidence for a shared uptake mechanism for proteinase complexes of αl-proteinase inhibitor and antithrombin III, J. Cell Biochem. 25:231–243.PubMedCrossRefGoogle Scholar
  31. Gadek, J. E., Fulmer, J. D., Gelfand, J. A., Frank, M. M., Petty, T. L., and Crystal, R. G., 1980, Danazol-induced augmentation of serum αl-antitrypsin levels in individuals with marked deficiency of this antiprotease, J. Clin. Invest. 66:82–87.PubMedCrossRefGoogle Scholar
  32. Gasic, G. J., Viner, E. D., Budzynski, A. I., and Gasic, G. P., 1983, Inhibition of lung tumor colonization by leech salivary gland extracts from Haementeria ghilianni, Cancer Res. 43:1633–1636.PubMedGoogle Scholar
  33. Gendler, S. J., and Tokes, Z. A., 1984, Active proteinase inhibitors associated with human breast epithelial cells, J. Cell Biochem. 26:157–167.PubMedCrossRefGoogle Scholar
  34. Gendler, J., and Tokes, Z. A., 1986, Expression of an active proteinase inhibitor by human breast epithelial cells, Biochim. Biophys. Acta 882:242–253.PubMedCrossRefGoogle Scholar
  35. Giudice, L. C., Farrell, E. M., Pham, H., Lamson, G., and Rosenfeld, R. G., 1990, Insulin-like growth factor binding proteins in maternal serum throughout gestation and in the Puerperium: Effects of a pregnancy-associated serum protease activity, J. Clin. Endocrinol. Metab. 71:806–816.PubMedCrossRefGoogle Scholar
  36. Graham, K. A., Richardson, C. L., Minden, M. D., Trent, J. M., and Buick, R. N., 1985, Varying degrees of amplification of the N-ras oncogene in the human breast cancer cell line MCF-7, Cancer Res. 45:2201–2205.PubMedGoogle Scholar
  37. Greenberg, M. E., and Ziff, E. B., 1984, Stimulation of 3T3 cells induces transcription on the c-fos proto-oncogene, Nature 311:433–438.PubMedCrossRefGoogle Scholar
  38. Guilbaud, N., Pichon, M. F., Faye, J. C., Bayard, F., and Valette, A., 1988, Modulation of estrogen receptors by phorbol diesters in human breast MCF-7 cell line, Mol. Cell. Endocrinol. 56:157–163.PubMedCrossRefGoogle Scholar
  39. Gupta, S. K., Niles, J. L., McCluskey, R. J., and Arnaout, M. A., 1990, Identity of Wegener’s autoantigen (p29) with proteinase 3 and myeloblastin, Blood 76:2162.PubMedGoogle Scholar
  40. Hammond, G. L., Smith, C. L., Goping, I. S., Underhill, D. A., Harley, M. J., Reventos, J., Mustos, N. A., Gunalus, G. L., and Bardin, C. W., 1987, Primary structure of human corticosteroid binding globulin, deduced from hepatic and pulmonary cDNAs, exhibits homology with serine protease inhibitors, Proc. Natl. Acad. Sci. USA 84:5153–5157.PubMedCrossRefGoogle Scholar
  41. Hammond, G. L., Smith, C. L., Paterson, N. A., and Sibbald, W. J., 1990, A role forcorticosteroid-binding globulin in delivery of Cortisol to activated neutrophils, J. Clin. Endocrinol. Metab. 71:34–39.PubMedCrossRefGoogle Scholar
  42. Hand, P. H., Nuti, M., Colcher, D., and Schlom, J., 1983, Definition of antigenic heterogeneity and modulation among human mammary carcinoma cell populations using monoclonal antibodies to tumor-associated antigens. Cancer Res. 43:728–735.PubMedGoogle Scholar
  43. Hellman, S., and Harris, J. R., 1987, The appropriate breast cancer paradigm, Cancer Res. 47:339–342.PubMedGoogle Scholar
  44. Huseby, R. A., Maloney, T. M., and McGrath, C. M., 1984, Evidence for a direct growth-stimulating effect of estradiol on human MCF-7 cells in vivo, Cancer Res. 44:2654–2659.PubMedGoogle Scholar
  45. Jenne, D. E., and Tschopp, J., 1989, Granzymes, a family of serine proteases released from granules of cytolytic T lymphocytes upon T cell receptor stimulation, Immunol. Rev. 103:53–71.CrossRefGoogle Scholar
  46. Katzenellenbogen, B. S., Norman, M. J., Eckert, R. L., Peltz, S. W., and Mangel, W. F., 1984, Bioactivities, estrogen receptor interactions and plasminogen activator-inducing activities of tamoxifen and hydroxytamoxifen isomers in MCF-7 human breast cancer cells, Cancer Res. 44:112–119.PubMedGoogle Scholar
  47. Lau, C. K., Subramanian, M., Rasmussen, K., and Spelsberg, T. C., 1991, Rapid induction of the c-jun protooncogene in the avian oviduct by the antiestrogen tamoxifen, Proc. Natl. Acad. Sci. USA 88:829–833.PubMedCrossRefGoogle Scholar
  48. Lee, D., Shochat, D., and Gold, D. V., 1982, αl-Proteinase inhibitor production by human adenocarcinomas xenotransplanted into nude mice, J. Natl. Cancer Inst. 69:381–385.PubMedGoogle Scholar
  49. Liberman, J., Mittman, C., and Kent, J. R., 1971, Screening for heterozygous α1,-antitrypsin deficiency with diethylstilbestrol and effect of oral contraceptives, J. Am. Med. Assoc. 217:1198–1206.CrossRefGoogle Scholar
  50. Liotta, L. A., Steeg, P. S., and Stetler-Stevenson, W. G., 1991, Cancer metastasis and angiogenesis: An imbalance of positive and negative regulation, Cell 64:327–336.PubMedCrossRefGoogle Scholar
  51. Masot, O., Buskevitch, P. P., Capony, F., Garcia, M., and Rochefort, M., 1985, Estradiol increases the production of αl-antichymotrypsin in MCF-7 and T47D breast cancer cell lines, Mol. Cell. Endocrinol. 42:207–214.CrossRefGoogle Scholar
  52. Massague, J., 1990, Transforming growth factor α: A model for membrane-anchored growth factors, J. Biol. Chem. 265:21393–21396.PubMedGoogle Scholar
  53. Mignatti, P., Robbins, E., and Rifkin, D., 1987, Tumor invasion through the human amniotic membrane: Requirement for a proteinase cascade, Cell 47:487–498.CrossRefGoogle Scholar
  54. Montesano, R., and Orci, L., 1985, Tumor-promoting phorbol esters induce angiogenesis in vitro, Cell 42:469–477.PubMedCrossRefGoogle Scholar
  55. Mornex, J. F., Chytil-Weir, A., Martinet, Y., Courtney, M., LeCocq, J. P., and Crystal, R., 1986, Expression of the α1-antitrypsin gene in mononuclear phagocytes of normal and α1-antitrypsin-deficient individuals, J. Clin. Invest. 77:1952–1961.PubMedCrossRefGoogle Scholar
  56. Nelson, R. B., and Siman, R., 1990, Clipsin, a chymotrypsin-like protease in rat brain which is irreversibly inhibited by α1-antifchymotrypsin, J. Biol. Chem. 265:3836–3843.PubMedGoogle Scholar
  57. Newman, B., Austin, M. A., Lee, M., and Kung, M. K., 1988, Inheritance of human breast cancer: Evidence for autosomal dominant transmission in high-risk families, Proc. Natl. Acad. Sci. USA 85:3044–3048.PubMedCrossRefGoogle Scholar
  58. Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumor promotion, Nature 308:693–698.PubMedCrossRefGoogle Scholar
  59. Niwa, T., Bradlow, H. L., Fishman, J., and Swaneck, G. E., 1989, Determination of estradiol 2-and 16β-hydroxylase activities in MCF-7 human breast cancer cells in culture using radiometric analysis, J. Steroid Biochem. 33:311–314.PubMedCrossRefGoogle Scholar
  60. Osborne, C. K., Hobbs, K., and Clark, G. M., 1985, Effect of estrogens and antiestrogens on growth of human breast cancer cells in athymic nude mice, Cancer Res. 45:584–590.PubMedGoogle Scholar
  61. Osborne, C. K., Hobbs, K., and Trent, J. M., 1987, Biological differences among MCF-7 human breast cancer cell lines from different laboratories, Breast Cancer Res. Treat. 9:111–121.PubMedCrossRefGoogle Scholar
  62. Osborne, C. K., Clemmons, D. R., and Arteaga, C. L., 1990, Regulation of breast cancer growth by insulin-like growth factors, J. Steroid Biochem. Mol. Biol. 37:805–809.PubMedCrossRefGoogle Scholar
  63. Ostrowski, L. E., Ahsan, A., Suthar, B. P., Bain, D. L., Wong, C., Patel, A., and Schultz, R. M., 1986, Selective inhibition of proteolytic enzymes in an in vivo model for experimental metastasis, Cancer Res. 46:4121–4128.PubMedGoogle Scholar
  64. Pandiella, A., and Massague, J., 1991, Multiple signals activate cleavage of the membrane transforming growth factor-α precursor, J. Biol. Chem. 266:5769–5773.PubMedGoogle Scholar
  65. Pemberton, P. A., Stein, P. E., Pepys, M. B., Potter, J. M., and Carrell, R. W., 1988, Hormone binding globulins undergo serpin conformation change in inflammation, Nature 336:257–258.PubMedCrossRefGoogle Scholar
  66. Perlino, E., Cortese, R., and Ciliberto, G., 1987, The human αl-antitrypsin gene is transcribed from two different promoters in macrophages and hepatocytes, EMBO J. 6:2767–2771.PubMedGoogle Scholar
  67. Perlmutter, D. H., Cole, F. S., Kilbridge, P., Rossing, T. H., and Colten, H. R., 1985, Expression of the αl-proteinase inhibitor gene in human monocytes and macrophages, Proc. Natl. Acad. Sci. USA 82:795–799.PubMedCrossRefGoogle Scholar
  68. Perlmutter, D. H., Travis, J., and Punsal, P. I., 1988a, Distinct and additive effects of elastase and endotoxin on expression of α1l-antiproteinase inhibitor in mononuclear phagocytes, J. Biol. Chem. 263:16499–16503.PubMedGoogle Scholar
  69. Perlmutter, D.H., Travis, J., and Punsal, P. I., 1988b, Elastase regulates synthesis of its inhibitor, αl-proteinase inhibitor, and exaggerates the defect in homozygous piZZ αl PI deficiency, J. Clin. Invest. 81:1774–1780.PubMedCrossRefGoogle Scholar
  70. Perlmutter, D. H., Daniels, J. D., Auerbach, H. S., De Schryver, K. K., Winter, H. S., and Alpers, D. H., 1989a, The alpha-1-antitrypsin gene is expressed in a human intestinal epithelial cell line, J. Biol. Chem. 264:9485–9490.PubMedGoogle Scholar
  71. Perlmutter, D. H., May, L. T., and Sehgal, P. B., 1989b, Interferon β2/interleukin 6 modulates synthesis of αl-antitrypsin in human mononuclear phagocytes and in human hepatoma cells, J. Clin. Invest. 84:138–144.PubMedCrossRefGoogle Scholar
  72. Persky, B., Ostrowski, L. E., Pagast, P., Ahasan, A., Schultz, R. ML, 1986, Inhibition of proteolytic enzymes in the in vitro model for basement membrane invasion, Cancer Res. 46:4129–4134.PubMedGoogle Scholar
  73. Ray, M. B., Gebos, K., Callea, F., and Desmet, D. V., 1982, αl-Antitrypsin immunoreactivity in gastric carcinoid, Histopathology 6:289–297.PubMedCrossRefGoogle Scholar
  74. Rice, W. G., and Weiss, S. J., 1990, Regulation of proteolysis at the neutrophil-substrate interface by secretory leukoprotease inhibitor, Science 249:178–181.PubMedCrossRefGoogle Scholar
  75. Rosenthal, A., Lindquist, P. B., Bringman, T. S., Goeddel, D. V., and Derynck, R., 1986, Expression in rat fibroblasts of a human transforming growth factor-α cDNA results in transformation, Cell 48:301–309.CrossRefGoogle Scholar
  76. Russo, J., Brennan, M. J., and Rich, M. A., 1976, Induction of tumor growth by inoculation of a human breast cancer cell (MCF7) into ovary or pituitary grafted nude mice, Proc. Am. Assoc. Cancer Res. 17:16–19.Google Scholar
  77. Saito, D., Sawamura, M., Umezawa, K., Kanai, Y., Furihata, C., Matsushima, T.,and Sugimura, T., 1980, Inhibition of experimental blood-borne lung metastasis by protease inhibitors, Cancer Res. 40:2539–2542.PubMedGoogle Scholar
  78. Sandgren, E. P., Luetteke, N. C., Palmiter, R. D., Brinster, R. L., and Lee, D. C., 1990, Overex-pression of TGFα in transgenic mice: Induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast, Cell 61:1121–1135.PubMedCrossRefGoogle Scholar
  79. Schechter, N. M., Sprows, J. L., Schoenberger, O. L., Lazarus, G. S., Cooperman, B. S., and Rubin, H., 1989, Reaction of human skin chymotrypsin-like proteinase chymase with plasma proteinase inhibitors, J. Biol. Chem. 264:21308–21315.PubMedGoogle Scholar
  80. Schorpp, M., Kugler, W., Wagner, U., and Ryffel, G. U., 1988, Hepatocyte-specific promoter element HP1 of the xenopus albumin gene interacts with transcriptional factors of mammalian hepatocyte, J. Mol. Biol. 202:307–320.PubMedCrossRefGoogle Scholar
  81. Shin, S. I., 1979, Use of nude mice for tumorigenicity testing and mass propagation, Methods Enzymol. 58:370–379.PubMedCrossRefGoogle Scholar
  82. Slaga, T. J., 1983, Cellular and molecular mechanisms of tumor promotion, Cancer Surv. 2:595–612.Google Scholar
  83. Soule, H. D., Vasquez, J., Long, A., Albelbert, S., and Brennan, M. A., 1973, Human cell line from a pleural effusion derived from a breast carcinoma, J. Natl. Cancer Inst. 51:1409–1416.PubMedGoogle Scholar
  84. Stein, P. E., Leslie, A. G., Finch, J. T., Turnell, W. G, McLaughlin, P. J., and Carrell, R. W., 1990, Crystal structure of ovalbumin as a model for the reactive centre of serpins, Nature 347:99–102.PubMedCrossRefGoogle Scholar
  85. Stenman, U. H., Leinonen, J., Alfthan, H., Rannikko, S., Tuhkanen, K., and Alfthan, O., 1991, A complex between prostrate-specific antigen and alpha 1-antichymotrypsin is the major form of prostate-specific antigen in serum of patients with prostatic cancer: Assay of the complex improves clinical sensitivity for cancer, Cancer Res. 51:222–226.PubMedGoogle Scholar
  86. Strous, G. J., van Kerkhof, P., Dekker, J., and Schwartz, A. L., 1988, Metalloendoprotease inhibitors block protein synthesis, intracellular transport, and endocytosis in hepatoma cells, J. Biol. Chem. 263:18197–18204.PubMedGoogle Scholar
  87. Tamir, S., Kadner, S. S., Katz, J., and Finlay, T. H., 1990, Regulation of antitrypsin and anti-chymotrypsin synthesis by MCF-7 breast cancer cell lines, Endocrinology 127:1319–1328.PubMedCrossRefGoogle Scholar
  88. Teixido, J., Wong, S. T., Lee, D., and Massague, J., 1990, Generation of transforming growth factor-α from the cell surface by an O-glycosylation-independent multistep process, J. Biol. Chem. 265:6410–6415.PubMedGoogle Scholar
  89. Travis, J., and Salvasen, G. S., 1983, Human plasma proteinase inhibitors, Annu. Rev. Biochem. 52:655–709.PubMedCrossRefGoogle Scholar
  90. Travis, J., Shieh, B. H., and Potempa, J., 1988, The functional role of acute phase plasma proteinase inhibitors, TokaiJ. Exp. Clin. Med. 13:313–320.Google Scholar
  91. Troll, W., Frenkel, K., and Wiesner, R., 1984, Protease inhibitors as anticarcinogens, J. Natl. Cancer Inst. 73(6): 1245–1250.PubMedGoogle Scholar
  92. Wewers, M. D., Casolaro, M. A., and Crystal, R. G., 1987, Comparison of αl-antitrypsin levels and antineutrophil elastase capacity of blood and lung in a patient with the αl-antitrypsin phenotype null-null before and during αl-antitrypsin augmentation therapy, Am. Rev. Respir. Dis. 135:539–543.PubMedGoogle Scholar
  93. Whitham, S. E., Murphy, G., Angel, P., and Rahmsdorf, H. J., 1986, Comparison of human stromelysin and collagenase by cloning and sequence analysis, Biochem. J. 240:913–916.PubMedGoogle Scholar
  94. Wilding, G., Lippman, M. E., and Gelman, E. P., 1988, Effects of steroid hormones and peptide growth factors on protooncogene c-fos expression in human breast cancer cells, Cancer Res. 48:802–805.PubMedGoogle Scholar
  95. Yagel, S., Khokha, R., Denhardt, D. T., Kerbel, R. S., Parhar, R. S., and Lala, P. K., 1989, Mechanisms of cellular invasiveness: A comparison of amnion invasion in vitro and metastatic behavior in vivo, J. Natl. Cancer. Inst. 81:768–775.PubMedCrossRefGoogle Scholar
  96. Yavelow, J., Finlay, T. H., Kennedy, A. R., and Troll, W., 1983, Bowman-Birk soybean protease inhibitor as an anticarcinogen, Cancer Res. 43:2454–2459.Google Scholar
  97. Yavelow, J., Collins, M., Birk, Y, and Troll, W., 1985, Nanomolar concentrations of Bowman-Birk soybean protease inhibitor suppress X-ray induced transformation in vitro, Proc. Natl. Acad. Sci. USA 82:5395–5399.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Thomas H. Finlay
    • 1
  • Susan S. Kadner
    • 1
  • Snait Tamir
    • 1
  1. 1.Department of Obstetrics and GynecologyNew York University Medical CenterNew YorkUSA

Personalised recommendations