Advertisement

A Role for Esterases in Steroid Hormone Turnover

  • Mortimer Levitz
  • Sila Banerjee
  • Joseph Katz
  • Uma Raju
  • Thomas H. Finlay

Abstract

Studies attempting to elucidate the physiological role of esterases have been complicated by their lack of specificity exhibited and the overall failure to identify specific substrates that may be targets for an esterase under study. The availability of naphthyl esters and azo dyes containing ester linkages, coupled with histochemical staining techniques that permitted the visualization of hydrolytic activities following electrophoretic separations, led to classifications according to substrate preference. However, the early broad classification of esterases in vertebrate plasma into three types by Augustinsson (1961)—carboxyl esterases (EC 3.1.1.1), aryl esterases (EC 3.1.1.2), and cholinesterases (EC 3.1.1.8)—must be viewed within the context of overlapping activities.

Keywords

Fatty Acid Ester Esterase Activity Fibrocystic Disease Breast Cyst Bovine Corpus Luteum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abul-Hajj, Y. J., 1982, Formation of estradiol-17β fatty acyl esters in mammary tumors, Steroids 40:149–156.PubMedCrossRefGoogle Scholar
  2. Adams, J. B., Hall, R. T., and Nott, S., 1986, Esterification-deesterification of estradiol by human mammary cancer cells in culture, J. Steroid Biochem. 24:1159–1162.PubMedCrossRefGoogle Scholar
  3. Albert, D. H., Ponticarvo, L., and Lieberman, S., 1980, Identification of fatty acid esters of pregnenolone and allopregnenolone from bovine corpora lutea, J. Biol. Chem. 255:10618–10623.PubMedGoogle Scholar
  4. ]Aoyagi, T., Nagai, M. Iwabuchi, M., Liaw, W. S., Andoh, T., and Umezawa, H., 1978, Aminopep-tidase activities on the surface of mammalian cells and their alterations associated with transformation, Cancer Res. 38:3505–3508.PubMedGoogle Scholar
  5. Augustinsson, K.-B., 1961, Multiple forms of esterase in vertebrate blood plasma, Ann. N.Y. Acad. Sci. 94:844–860.CrossRefGoogle Scholar
  6. Banerjee, S., Katz, J., Levitz, M., and Finlay, T. H., 1990, Identification of a novel esterase in human breast cyst fluid, Ann. N.Y. Acad. Sci. 586:204–212.PubMedCrossRefGoogle Scholar
  7. Banerjee, S., Katz, J., Levitz, M., and Finlay, T. H., 1991, Purification and properties of an esterase from human breast cyst fluid, Cancer Res. 51:1092–1098.PubMedGoogle Scholar
  8. Berning, W., de Looze, S. M., and von Deimling, O., 1985, Identification and development of a genetically closely-linked carboxylesterase family of the mouse liver, Comp. Biochem. Physiol. 80B:859–865.Google Scholar
  9. Chong, K. S., Davidson, L., Huttash, R. G., and Lacko, A. G., 1981, Characterization of lecithin:cholesterol acyltransferase from human plasma: Purification of the enzyme, Arch. Biochem. Biophys. 211:119–124.PubMedCrossRefGoogle Scholar
  10. Dufer, J., Trentesaux, C., and Desplaces, A., 1984, Differential effect of the serine protease inhibitor phenyl methyl sulfonyl fluoride on cytochemically detectable esterase in human leukocytes and platelets, Scand. J. Haematol. 32:25–32.PubMedCrossRefGoogle Scholar
  11. Dupont, W. D., and Page, D. L., 1985, Risk factors for breast cancer in women with proliferative breast disease, N. Engl. J. Med. 312:146–151.PubMedCrossRefGoogle Scholar
  12. Fleisher, M., Bradlow, H. L., Schwartz, M. K., and Breed, C. N., 1984, The anion gap in human breast cyst fluid (HBCF): A possible high risk indicator for breast cancer, Clin. Chem. 30:940 (abstract #3).Google Scholar
  13. Haagensen, C. D., 1971, Diseases of the Breast, Saunders, Philadelphia, p. 155.Google Scholar
  14. Haagensen, D. E., Mazoujian, G., Dilley, W. G., Pedersen, C. E., Kister, S. J., and Wells, S. A., 1979, Breast gross cyst fluid analysis. 1. Isolation and radioimmunoassay for a major component, J. Natl. Cancer Inst. 62:239–247.PubMedGoogle Scholar
  15. Hershcopf, R. J., Bradlow, H. L., Fishman, J., Swaneck, G. E., Lamer, J. M., and Hochberg, R. B., 1985, Metabolism of estradiol fatty acid esters in man, J. Clin. Endocrinol. Metab. 61:1071–1075.PubMedCrossRefGoogle Scholar
  16. Heymann, E., 1980, Carboxylesterases and amidases, in: Enzymatic Basis of Detoxification, Volume 11 (W. B. Jacoby, eds.), Academic Press, New York, pp. 291–323.Google Scholar
  17. Hochberg, R., Bandy, L., Ponticorvo, L., Welch, M., and Lieberman, S., 1979, Naturally occurring lipoidal derivatives of 3β-hydroxy-5-pregnen-20-one; 3β,17α-dihydroxy-5-prenen-20-one and 3β-hydroxy-5-androsten-17-one, J. Steroid Biochem. 11:1333–1340.PubMedCrossRefGoogle Scholar
  18. Janocko, L., and Hochberg, R. B., 1983, Estradiol fatty acid esters occur naturally in human blood, Science 222:1334–1336.PubMedCrossRefGoogle Scholar
  19. Janocko, L., Larner, J. M., and Hochberg, R. B., 1984, The interaction of C-17 esters of estradiol with the estrogen receptor, Endocrinology 114:1180–1186.PubMedCrossRefGoogle Scholar
  20. Jones, D. L., and James, V. H. T., 1985, The identification, quantification and possible origin of non-polar conjugates in human plasma, J. Steroid Biochem. 22:243–247.PubMedCrossRefGoogle Scholar
  21. Katz, J., Finlay, T. H., Banerjee, S., and Levitz, M., 1987, An estrogen-dependent esterase activity in MCF-7 cells, J. Steroid Biochem. 26:687–692.PubMedCrossRefGoogle Scholar
  22. Katz, J., Levitz, M., Kadner, S. S., and Finlay, T. H., 1991, Estradiol esters can replace 17β-estradiol in the stimulation of DNA and esterase synthesis by MCF-7 cells: A possible role for the estrogen-sensitive MCF-7 cell esterase, J. Steroid Biochem. Mol. Biol. 38:17–26.PubMedCrossRefGoogle Scholar
  23. Kesner, L., Wangshang, Y. H., Bradlow, H. L., Breed, C. N., and Fleisher, M., 1988, Proteases in cyst fluid from human gross cyst breast disease, Cancer Res. 48:6379–6383.PubMedGoogle Scholar
  24. Larner, J. M., and Hochberg, R. B., 1985, The clearance and metabolism of estradiol and estradiol-17-esters in the rate, Endocrinology 117:1209–1214.PubMedCrossRefGoogle Scholar
  25. Larner, J. M., Rosner, W., and Hochberg, R. B., 1987, Binding of estradiol-17-fatty acid esters to plasma proteins, Endocrinology 121:738–744.PubMedCrossRefGoogle Scholar
  26. Margraf, H. W., Margraf, C.O., and Weichselbaum, T. E., 1963, Isolation and identification of adrenocortical steroids in human peripheral blood, Steroids 2:155–165.CrossRefGoogle Scholar
  27. Martyn, P., Smith, D. L., and Adams, J. B., 1987, Selective turnover of the essential fatty acid ester components of estradiol-17β lipoidal derivatives formed by human mammary cancer cells in culture, J. Steroid Biochem. 28:393–398.PubMedCrossRefGoogle Scholar
  28. Mellon-Nussbaum, S. H., Ponticorvo, L., and Lieberman, S., 1979, Characterization of the lipoidal derivatives of pregnenolone prepared by incubation of the steroid with adrenal mitochondria, J. Biol. Chem. 254:12500–12505.PubMedGoogle Scholar
  29. Mellon-Nussbaum, S. H., Ponticorvo, L., Schatz, F., and Hochberg, R. B., 1982, Estradiol fatty acid esters, J. Biol. Chem. 257:5678–5684.PubMedGoogle Scholar
  30. Norum, K. R., 1974, The enzymology of cholesterol esterification, Scand. J. Clin. Lab. Invest. 33(Suppl. 137):7–13.Google Scholar
  31. Pearlman, W. H., Gueriguian, J. L., and Sawyer, M. E., 1973, A specific progesterone-binding component of human breast cyst fluid, J. Biol. Chem. 248:5736–5741.PubMedGoogle Scholar
  32. Peters, J., 1982, Nonspecific esterases of Mus musculus, Biochem. Genet. 20:585–606.PubMedCrossRefGoogle Scholar
  33. Raju, U., Kadner, S., Levitz, M., Kaganowicz, A., and Blaustein, A., 1981, Glucosiduronidation and esterification of androsterone by human breast tumors in vitro, Steroids 37:399–407.PubMedCrossRefGoogle Scholar
  34. Raju, U., Levitz, M., Banerjee, S., Bencsath, A., and Field, F. H., 1985, Androsterone long chain fatty acid esters in human breast cyst fluid, J. Clin. Endocrinol. Metab. 60:940–946.PubMedCrossRefGoogle Scholar
  35. Roy, R., and Belanger, A., 1989, Formation of lipoidal steroids in follicular fluid, J. Steroid Biochem. 33:257–262.PubMedCrossRefGoogle Scholar
  36. Schatz, F., and Hochberg, R. B., 1981, Lipoidal derivative of estradiol: The biosynthesis of a nonpolar estrogen metabolite, Endocrinology 109:697–703.PubMedCrossRefGoogle Scholar
  37. Umezawa, H., Aoyagi, T., Uotani, K., Hamada, M., Takeuchi, T., and Takahashi, S., 1980, Ebelactone, an inhibitor of esterase, produced by actinomycetes, J. Antibiot. 33:1594–1596.PubMedCrossRefGoogle Scholar
  38. von Deimling, O., Ronai, A., and de Looze, S., 1985, Nonspecific esterases of mammalian testis. Comparative studies on the mouse (Mus musculus) and rat (Rattus norvegicus), Histochemistry 82:547–555.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Mortimer Levitz
    • 1
  • Sila Banerjee
    • 1
  • Joseph Katz
    • 1
  • Uma Raju
    • 1
  • Thomas H. Finlay
    • 1
  1. 1.Department of Obstetrics and GynecologyNew York University Medical CenterNew YorkUSA

Personalised recommendations