Advertisement

Suppression of c-myc by Anticarcinogenic Protease Inhibitors

  • Janice D. Chang
  • Ann R. Kennedy

Abstract

Malignant transformation in vitro and in vivo can be prevented by treating carcinogen-exposed cells or animals with a variety of microbial and plant protease inhibitors. As one approach to studying the nature by which protease inhibitors may be preventing malignant transformation, we have performed studies on the effects of protease inhibitors on c-myc expression in proliferating normal and transformed mouse fibroblast cells. Our experiments were designed with the aim of understanding the way in which protease inhibitors might be working in the cell to prevent malignant transformation and determining whether the protease inhibitor effect of reducing transformation yields could be related to the reduction in c-myc RNA levels by protease inhibitors. Additional experiments were also performed, examining the role of c-myc in the cell cycle and determining the effect of antipain on the stability of the c-myc message.

Keywords

Burkitt Lymphoma Labile Protein Mouse Plasmacytomas Protease Inhibitor Antipain Murine Plasmacytoma Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alitalo, K., Schwab, M., Lin, C. C., Varmus, H. E., and Bishop, J. M., 1983, Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene c-myc in malignant neuroendocrine cells from a human colon carcinoma, Proc. Natl. Acad. Sci. USA 80:1707–1711.PubMedCrossRefGoogle Scholar
  2. Armelin, H. A., Armelin, M. C. S., Kelly, K., Steward, T., Leder, P., Cochran, B. H., and Stiles, C. D., 1984, Functional role for c-myc in mitogenic response to platelet-derived growth factor, Nature 310:655–700.PubMedCrossRefGoogle Scholar
  3. Battey, J., Moulding, C., Taub, R., Murphy, W., Stewart, T., Potter, H., Lenoir, G., and Leder, P., 1983, The human c-myc oncogene: Structural consequences of translocation into the IgH locus in Burkitt lymphoma, Cell 34:779–787.PubMedCrossRefGoogle Scholar
  4. Billings, P. C., Shuin, T., Lillehaug, J., Miura, T., Roy-Burman, P., and Landolph, J. R., 1987, Enhanced expression and state of the c-myc oncogene in chemically and X-ray transformed C3H10T1/2 cl 8 mouse embryo fibroblasts, Cancer Res. 47:3643–3649.PubMedGoogle Scholar
  5. Blanchard, J. M., Piechaczyk, M., Dani, C., Chambard, J. C., Franchi, A., Pouoyssegur, J., and Jeanteur, P., 1985, C-myc gene is transcribed at high rate in Go-arrested fibroblasts and is post-transcriptionally regulated in response to growth factors, Nature 317:443–445.PubMedCrossRefGoogle Scholar
  6. Campisi, J., Gray, H. E., Pardee, A. B., Dean, M., and Sonenshein, G. E., 1984, Cell cycle control of c-myc but not c-ras expression is lost following chemical transformation, Cell 36:241–247.PubMedCrossRefGoogle Scholar
  7. Chang, J. D., and Kennedy, A. R., 1988, Cell cycle progression of C3H10T1/2 and 3T3 cells in the absence of an increase in c-myc RNA levels, Carcinogenesis 9:17–20.PubMedCrossRefGoogle Scholar
  8. Chang, J. D., Billings, P. C., and Kennedy, A. R., 1985, C-myc expression is reduced in antipain-treated proliferating C3H10T1/2 cells, Biochem. Biophys. Res. Commun. 133:830–835.PubMedCrossRefGoogle Scholar
  9. Chang, J. D., Li, J. H., Billings, P. C., and Kennedy, A. R., 1990, Effects of protease inhibitors on c-myc expression in normal and transformed C3H10T1/2 cell lines, Mol. Carcinogenesis 3:226–232.CrossRefGoogle Scholar
  10. Cochran, B. H., Zullo, J., Verma, I. M., and Stiles, C. D., 1984, Expression of the c-fos gene and of fos-related gene is stimulated by platelet-derived growth factor, Science 226:1080–1082.PubMedCrossRefGoogle Scholar
  11. Cohrs, R. J., Goswami, B. B., and Sharma, O. K., 1988, Down regulation of c-myc, c-fos and erb-B during estrogen induced proliferation of the chick oviduct, Biochem. Biophys. Res. Commun. 150:82–88.PubMedCrossRefGoogle Scholar
  12. Collins, S., and Groudine, M., 1982, Amplification of endogenous myc-related DNA sequences in a human myeloid leukaemia cell line, Nature 298:679–681.PubMedCrossRefGoogle Scholar
  13. Corcoran, L. M., Adams, J. M., Dunn, A. R., and Cory, S., 1984, Murine T lymphomas in which the cellular myc oncogene has been activated by retroviral insertion, Cell 37:113–122.PubMedCrossRefGoogle Scholar
  14. Dalla Favera, R., Bregni, M., Erikson, J., Patterson, D., Gallo, R. C., and Croce, C. M., 1982a, Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells, Proc. Natl. Acad. Sci. USA 79:7824–7827.PubMedCrossRefGoogle Scholar
  15. Dalla Favera, R., Wong-Staal, F., and Gallo, R. C., 1982b, One gene amplification in promyelocytic leukaemia cell line HL-60 and primary leukaemic cells of the same patient, Nature 299:61–63.PubMedCrossRefGoogle Scholar
  16. Dani, C., Blanchard, J. M., Piechaczyk, M., Sabouty, S. E., and Jeanteur, P., 1984, Extreme instability of myc mRNA in normal and transformed human cells, Proc. Natl. Acad. Sci. USA 81:7046–7050.PubMedCrossRefGoogle Scholar
  17. Dean, M., Levine, R. A., Ran, W., Kindy, M. S., Sonenshein, G. E., and Campisi, J., 1986, Regulation of c-myc transcription and mRNA abundance by serum growth factors and cell contact, J. Biol. Chem. 261:9161–9166.PubMedGoogle Scholar
  18. Donner, P., Greiser-Wilke, I., and Moelling, K., 1982, Nuclear localization and DNA binding of the transforming gene product of avian myelocytomatosis virus, Nature 305:112–116.Google Scholar
  19. Einat, M., Resnitzky, D., and Kimchi, A., 1985, Close link between reduction of c-myc expression by interferon and Go/G1 arrest, Nature 313:597–600.PubMedCrossRefGoogle Scholar
  20. Erikson, J., Ar-Rushdi, A., Drwinga, H. L., Nowell, P. C., and Croce, C. M., 1983, Transcriptional activation of the translocated c-myc oncogene in Burkitt lymphoma, Proc. Natl. Acad. Sci. USA 80:820–824.PubMedCrossRefGoogle Scholar
  21. Franza, B. R., Maruyama, K., Garrels, J. I., and Ruley, H. E., 1986, In vitro establishment is not a sufficient prerequisite for transformation by activated ras oncogenes, Cell 44:409–418.PubMedCrossRefGoogle Scholar
  22. Gazin, C., Dupont de Dichenin, S., Hampe, A., Masson, J. M., Martin, P., Stehelin, D., and Galibert, F., 1984, Nucleotide sequence of the human c-myc locus: Provocative open reading frame within the first exon, EMBO J. 3:383–388.PubMedGoogle Scholar
  23. Godeau, F., Persson, H., Gray, H. E., and Pardee, A. B., 1986, C-myc expression is dissociated from DNA synthesis and cell division in Xenopus oocyte and early embryonic development, EMBO J. 5:3517–3577.Google Scholar
  24. Greenberg, M. E., and Ziff, E. B., 1984, Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene, Nature 311:433–438.PubMedCrossRefGoogle Scholar
  25. Hamlyn, P. H., and Rabbits, T. H., 1983, Translocation joins c-myc and immunoglobulin gamma-1 genes in a Burkitt lymphoma revealing a third exon in the c-myc oncogene, Nature 304:135–139.PubMedCrossRefGoogle Scholar
  26. Hann, S. R., and Eisenman, R. N., 1984, Proteins encoded by the human c-myc oncogene: Differential expression in neoplastic cells, Mol. Cell. Biol. 4:2486–2497.PubMedGoogle Scholar
  27. Hayward, W. S., Neel, B. G., and Astrin, S., 1981, Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis, Nature 290:475–479.PubMedCrossRefGoogle Scholar
  28. Heikkila, R., Schwab, G., Wickstrom, E., Loke, S. L., Pluznik, D. H., Watt, R., and Neckers, L. M., 1987, A c-myc antisense oligodeoxynucleotide inhibits entry into S phase but not progression from Go to G1, Nature 328:445–449.PubMedCrossRefGoogle Scholar
  29. Kaczmarek, L., Hyland, J. K., Watt, R. A., Rosenberg, M., and Baserga, R., 1985, Microinjected c-myc as a competence factor, Science 228:1313–1315.PubMedCrossRefGoogle Scholar
  30. Kaczmarek, L., Miller, M., Hammond, R. A., and Mercers, W. E., 1986, A microinjected monoclonal antibody against human DNA polymerase-α inhibits DNA replication in human, hamster, and mouse cell lines, J. Biol. Chem. 261:10802–10807.PubMedGoogle Scholar
  31. Keath, E. J., Caimi, P. G., and Cole, M. D., 1984a, Fibroblast lines expressing activated c-myc oncogenes are tumorigenic in nude mice and syngeneic animals, Cell 39:339–348.PubMedCrossRefGoogle Scholar
  32. Keath, E. J., Kelekar, A., and Cole, M. D., 1984b, Transcriptional activation of the translocated c-myc oncogene in mouse plasmacytomas: Similar RNA levels in tumor and proliferating normal cells, Cell 37:521–528.PubMedCrossRefGoogle Scholar
  33. Kelly, K., Cochran, B. H., Stiles, C. D., and Leder, P., 1983, Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor, Cell 35:603–610.PubMedCrossRefGoogle Scholar
  34. Kennedy, A. R., 1984, Promotion and other interactions between agents in the induction of transformation in vitro in fibroblasts, in: Mechanisms of Tumor Promotion, Volume III (T. J. Slaga, ed.), CRC Press, Boca Raton, Fla., pp. 13–55.Google Scholar
  35. Kennedy, A. R., 1985, The conditions for the modification of radiation transformation in vitro by a tumor promoter and protease inhibitors, Carcinogenesis 6:1441–1445.PubMedCrossRefGoogle Scholar
  36. Kennedy, A. R., Fox, M., Murphy, G., and Little, J. B., 1980, Relationship between x-ray exposure and malignant transformation in C3H 10T/2 cells, Proc. Natl. Acad. Sci. USA 77:7262–7266.PubMedCrossRefGoogle Scholar
  37. Knight, E., Anton, E. D., Fahey, D., Friedland, B. K., and Jonak, G. J., 1985, Interferon regulates c-myc gene expression in Daudi cells at the post-transcriptional level, Proc. Natl. Acad. Sci. USA 82:1151–1154.PubMedCrossRefGoogle Scholar
  38. Land, H., Parada, L. F., and Weinberg, W. A., 1983a, Cellular oncogenes and multistep carcinogenesis, Science 222:771–778.PubMedCrossRefGoogle Scholar
  39. Land, H., Parada, L. F., and Weinberg, W. A., 1983b, Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes, Nature 304:596–606.PubMedCrossRefGoogle Scholar
  40. Larsson, L., Gray, H. E., Totterman, T., Petterson, U., and Nilsson, K., 1987, Drastically increased expression of myc and fos proto-oncogenes during in vitro differentiation of chronic lymphocytic leukemia cells, Proc. Natl. Acad. Sci. USA 84:223–227.PubMedCrossRefGoogle Scholar
  41. Leder, P., Battey, J., Lenoir, G., Moulding, C., Murphy, W., Potter, H. T., and Taub, R., 1983, Translocations among antibody genes in human cancer, Science 222:765–771.PubMedCrossRefGoogle Scholar
  42. Little, C. D., Nau, M. N., Carney, D. N., Gazdar, A. F., and Minna, J. F., 1983, Amplification and expression of the c-myc oncogene in human lung cancer cell lines, Nature 306:194–196.PubMedCrossRefGoogle Scholar
  43. Marcu, K. B., Harris, L. J., Stanton, L. W., Erikson, J., Watt, R., and Croce, C. M., 1983, Transcriptionally active c-myc oncogene is contained within NIARD, a DNA sequence associated with chromosome translocations in B-cell neoplasia, Proc. Natl. Acad. Sci. USA 80:519–523.PubMedCrossRefGoogle Scholar
  44. Meyn, M. S., Rossman, T., and Troll, W., 1977, A protease inhibitor blocks SOS functions in Escherichia coli: Antipain prevents λ repressor inactivation, ultraviolet mutagenesis, and filamentous growth, Proc. Natl. Acad. Sci. USA 74:1152–1156.PubMedCrossRefGoogle Scholar
  45. Mushinski, J. F., Bauer, S. R., Potter, M., and Reddy, E. P., 1983, Increased expression of myc-related oncogene mRNA characterizes most BALB/c plasmacytomas induced by pristane or Abelson murine leukemia virus, Proc. Natl. Acad. Sci. USA 80:1073–1077.PubMedCrossRefGoogle Scholar
  46. Newbold, R. F., and Overell, R. W., 1983, Fibroblast immortality is a prerequisite for transformation by EJ c-Ha-ras oncogene, Nature 304:648–651.PubMedCrossRefGoogle Scholar
  47. Persson, H., and Leder, P., 1984, Nuclear localization and DNA binding properties of protein expressed by human c-myc oncogene, Science 225:718–721.PubMedCrossRefGoogle Scholar
  48. Pfeifer-Ohlsson, S., Goustin, A. S., Rydnert, J., Wahlstrom, T., Bjersing, L., Stehelin, D., and Ohlsson, R., 1984, Spatial and temporal pattern of cellular myc oncogene expression in developing human placenta: Implications for embryonic cell proliferation, Cell 38:585–596.PubMedCrossRefGoogle Scholar
  49. Piechaczyk, M., Yang, J. Q. Blanchard, J. M., Jeanteur, P., and Marcu, K. B., 1985, Post-transcriptional mechanisms are responsible for accumulation of truncated c-myc RNAs in murine plasma cell tumors, Cell 42:589–597.PubMedCrossRefGoogle Scholar
  50. Rabbits, P. H., Watson, J. V., Lamond, A., Forster, A., Stinson, M. A., Evan, G., Fischer, W., Atherton, E., Sheppard, P., and Rabbits, T. H., 1985, Metabolism of c-myc gene products: c-myc mRNA and protein expression in the cell cycle, EMBO J. 4:2009–2015.Google Scholar
  51. Rabbits, T. H., Forster, A., Baer, R., and Hamlyn, P. H., 1983a, Transcriptional enhancer identified near the human Cμ immunoglobulin heavy chain gene is unavailable to the translocated c-myc gene in a Burkitt lymphoma, Nature 306:806–809.CrossRefGoogle Scholar
  52. Rabbits, T. H., Hamlyn, P. H., and Baer, R., 1983b, Altered nucleotide sequences of a translocated c-myc gene in Burkitt lymphoma, Nature 306:706–765.Google Scholar
  53. Reitsma, P. H., Rothberg, P. G., Astrin, S. M., Trial, J., Bar-Shavit, Z., Hall, A., Teitelbaum, S. L., and Kahn, A. J., 1983, Regulation of myc gene expression in HL-60 leukaemia cells by a vitamin D metabolite, Nature 306:492–494.PubMedCrossRefGoogle Scholar
  54. Ruley, H. E., 1983, Adenovirus early region IA enables viral and cellular transforming genes to transform primary cells in culture, Nature 304:602–606.PubMedCrossRefGoogle Scholar
  55. Saito, H., Hayday, A. C., Wiman, K., Hayward, W. S., and Tonegawa, S., 1983, Activation of the c-myc gene by translocation: A model for translational control, Proc. Natl. Acad. Sci. USA 80:7476–7480.PubMedCrossRefGoogle Scholar
  56. Schwab, M. F., Ramsay, G., Alitalo, K., Varmus, H. E. Bishop, J. M., Martinsson, T., Levan, G., and Levans, A., 1985, Amplification and enhanced expression of the c-myc oncogene in mouse SEWA tumour cells, Nature 315:345–347.PubMedCrossRefGoogle Scholar
  57. Scott, G. K., 1987, Proteinases and eukaryotic cell growth, Comp. Biochem. Physiol. 87B:1–10.Google Scholar
  58. Shen-Ong, G. L. C., Keath, E. J., Piccoli, S. P., and Cole, M. D., 1982, Novel myc oncogene RNA from abortive immunoglobulin gene recombination in mouse plasmacytomas, Cell 31:443–452.PubMedCrossRefGoogle Scholar
  59. Spandidos, D. A., and Wilkie, N. M., 1984, Malignant transformation of early passage rodent cells by a single mutated human oncogene, Nature 310:469–475.PubMedCrossRefGoogle Scholar
  60. Stanton, L. W., Watt, R., and Marcu, K. B., 1983, Translocation, breakage and truncated transcripts of c-myc oncogene in murine plasmacytomas, Nature 303:401–406.PubMedCrossRefGoogle Scholar
  61. Steffen, D., 1984, Proviruses are adjacent to c-myc in some murine leukemia virus-induced lymphomas, Proc. Natl. Acad. Sci. USA 81:2097–2101.PubMedCrossRefGoogle Scholar
  62. Stewart, T. A., Bellve, A. R., and Leder, P., 1984, Transcription and promoter usage of the myc gene in normal somatic and spermatogenic cells, Science 226:707–710.PubMedCrossRefGoogle Scholar
  63. Studzinski, G. P., Brelvi, Z. S., Feldman, S. C., and Watt, R. A., 1986, Participation of c-myc protein in DNA synthesis of human cells, Science 234:467–470.PubMedCrossRefGoogle Scholar
  64. Taparowsky, E. J., Heaney, M. L., and Parson, J. T., 1987, Oncogene-mediated multistep transformation of C3H10T1/2 cells, Cancer Res. 47:4125–4129.PubMedGoogle Scholar
  65. Taub, R., Kirsch, I., Morton, C., Lenoir, G., Swan, D., Tronick, S., Aaronson, S., and Leder, P., 1982, Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells, Proc. Natl. Acad. Sci. USA 79:7837–7841.PubMedCrossRefGoogle Scholar
  66. Taylor, M. V., Gusse, M., Evans, G. I., Dathan, N., and Mechali, M., 1986, Xenopus myc protooncogene during development: Expression as a stable maternal mRNA uncoupled from cell division, EMBO J. 5:3563–3570.PubMedGoogle Scholar
  67. Thompson, C. B., Challoner, P. B., Neiman, P. E., and Groudine, M., 1985, Levels of c-myc oncogene mRNA are invariant throughout the cell cycle, Nature 314:363–366.PubMedCrossRefGoogle Scholar
  68. Varmus, H. E., 1982, Form and function of retroviral proviruses, Science 216:812–820.PubMedCrossRefGoogle Scholar
  69. Watt, R., Nishizuka, K., Sorrentino, J., Ar-Rushdi, A., Croce, C. M., and Rovera, G., 1983, The structure and nucleotide sequence of the 5′ end of the human c-myc oncogene, Proc. Natl. Acad. Sci. USA 80:6307–6311.PubMedCrossRefGoogle Scholar
  70. Watt, R. A., Shatzman, A. R., and Rosenberg, M., 1985, Expression and characterization of the human c-myc DNA binding protein, Mol. Cell. Biol. 5:448–456.PubMedGoogle Scholar
  71. Westin, E. H., Wong-Staal, F., Gelmann, E. P., Dalla-Favera, R., Papas, T. S., Lautenberger, J. A., Eva, A., Reddy, E. P., Tronick, S. R., Aaronson, S. A., and Gallo, R. C., 1982, Expression of cellular homologues of retroviral oncogenes in human hematopoietic cells, Proc. Natl. Acad. Sci. USA 79:2490–2494.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Janice D. Chang
    • 1
  • Ann R. Kennedy
    • 2
  1. 1.Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Radiation Oncology, School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations