Advertisement

Protease Inhibitor Suppression of ras Oncogene-Induced Transformation

  • Seymour J. Garte
  • Lydia Cox
  • Diane C. Currie
  • Joan Motz
  • Walter Troll

Abstract

As discussed in several chapters of this book, support for an active role of proteases and protease inhibitors in carcinogenesis and anticarcinogenesis has come from multiple observations that protease inhibitors suppress transformation in vitro and in several animal models (Belman and Garte, 1985; Troll and Wiesner, 1984; Corasanti et al., 1982; Kennedy and Little, 1978; Yavelow et al., 1983). Treatment of various cells and tissues with phorbol ester tumor promoters induces proteases including plasminogen activator (Quigley, 1979), and the promoting activity of phorbol ester is inhibited by protease inhibitors in vivo and in vitro (see Belman and Garte, 1985, for review). The mechanism of action of protease inhibitors as anticarcinogens is not well understood, and is probably complex. We thought it would be of interest to determine whether such agents could affect transformation of cells caused by a single purified activated oncogene, as opposed to radiation or chemical carcinogens. We therefore adapted the standard NIH3T3 transfection focus assay with an activated human H-ras oncogene to assess the effects of protease inhibitors (and other chemopreventive agents) on oncogene-induced cell transformation.

Keywords

Retinoic Acid NIH3T3 Cell Cellular Oncogene Epsilon Amino Caproic Acid Phorbol Ester Tumor Promoter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balmain, A., and Brown, K., 1988, Oncogene activation in chemical carcinogenesis, Adv. Cancer Res. 51:147–182.PubMedCrossRefGoogle Scholar
  2. Barbacid, M., 1987, ras genes, Annu. Rev. Biochem. 56:779–827.PubMedCrossRefGoogle Scholar
  3. Belman, S., and Garte, S. J., 1985, Proteases and cyclic nucleotides, in: Arachidonic Acid Metabolism and Tumor Promotion (S. M. Fischer and T. J. Slaga, eds.), Martinus Nijhoff, Boston, pp. 199–253.CrossRefGoogle Scholar
  4. Boutwell, R. K., 1974, The function and mechanism of promoters of carcinogenesis, CRC Crit. Rev. Toxicol. 2:419–443.PubMedCrossRefGoogle Scholar
  5. Brown, K., Quintanilla, M., Ramsden, M., Kerr, I. B., and Balmain, A., 1986, v-ras genes from Harvey and B ALB murine sarcoma viruses can act as initiators of two-stage mouse skin carcinogenesis, Cell 46:447–456.PubMedCrossRefGoogle Scholar
  6. Chang, J. D., Billings, P. C., and Kennedy, A. R., 1985, C-myc expression is reduced in antipain-treated proliferating C3H 10T1/2 cells, Biochem. Biophys. Res. Commun. 133:830–835.PubMedCrossRefGoogle Scholar
  7. Corasanti, J. G., Hobika, G. H., and Markus, G., 1982, Interference with dimethylhydrazine induction of colon tumors in mice by epsilon-amniocaproic acid, Science 216:1020–1021.PubMedCrossRefGoogle Scholar
  8. Cox, L. R., Motz, J., Troll, W., and Garte, S. J., 1991a, Antipain-induced suppression of oncogene expression in H-ras transformed cells, Cancer Res. 51:4810–4814.PubMedGoogle Scholar
  9. Cox, L., Motz, J., Troll, W., and Garte, S. J., 1991b, Effects of retinoic acid on NIH3T3 cell transformation by the H-ras oncogene, J. Cancer Res. Clin. Oncol. 117:926–932.CrossRefGoogle Scholar
  10. Diamond, A. M., Der, C. J., and Schwartz, J. L., 1989, Alterations in transformation efficiency by the ADPRT-inhibitor 3-aminobenzamide are oncogene specific, Carcinogenesis 10:383–385.PubMedCrossRefGoogle Scholar
  11. DiStefano, J. F., Cotto, C. A., and Hagag, N., 1988, Oncogene ras p21-and v-src pp60-transformed cells exhibit altered expression of proteases, Cancer Invest. 6:487–498.PubMedCrossRefGoogle Scholar
  12. Dotto, G. P., Parada, L. F., and Weinberg, R. A., 1985, Specific growth response of ras-transformed embryo fibroblasts to tumour promoters, Nature 318:472–475.PubMedCrossRefGoogle Scholar
  13. Garte, S. J., 1985, Differential effects of phorbol ester on the β-adrenergic response of normal and ras-transformed NIH3T3 cells, Biochem. Biophys. Res. Commun. 133:702–708.PubMedCrossRefGoogle Scholar
  14. Garte, S. J., Currie, D. C., and Troll, W., 1987, Inhibition of H-ras oncogene transformation of NIH3T3 cells by protease inhibitors, Cancer Res. 47:3159–3162.PubMedGoogle Scholar
  15. Gibbs, J. B., Sigal, I. S., and Scolnick, E. M., 1984, Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules, Proc. Natl. Acad. Sci. USA 81:5704–5708.PubMedCrossRefGoogle Scholar
  16. Heilbronn, R., Schlehofer, J. R., and Zur Hausen, H., 1985, Selective DNA-amplification induced by carcinogens (initiators): Evidence for a role of proteases and DNA polymerase alpha, Int. J. Cancer 36:85–91.PubMedCrossRefGoogle Scholar
  17. Hsiao, W. L., Gattoni-Celli, S., and Weinstein, I. B., 1984, Oncogene-induced transformation of C3H 10T1/2 cells is enhanced by tumor promoters, Science 226:552–555.PubMedCrossRefGoogle Scholar
  18. Kennedy, A. R., and Little, J. B., 1978, Protease inhibitors suppress radiation-induced malignant transformation in vitro, Nature 276:825–826.PubMedCrossRefGoogle Scholar
  19. Kennedy, A. R., and Little, J. B., 1984, Evidence that a second event in X-ray-induced oncogenic transformation in vitro occurs during cellular proliferation, Radiat. Res. 99:228–248.PubMedCrossRefGoogle Scholar
  20. Land, H., Parada, L. F., and Weinberg, R. A., 1983, Cellular oncogenes and multistep carcinogenesis, Science 222:771–778.PubMedCrossRefGoogle Scholar
  21. McDonnell, M. W., Simon, M. N., and Studier, R. W., 1977, Analysis of restriction fragments of T7 DNA and determination of molecular weights by electrophoresis in neutral and alkaline gels, J. Mol. Biol. 110:119–146.CrossRefGoogle Scholar
  22. Maniatis, T., Fritsch, E. F., and Samibrook, J., 1982, Molecular Cloning, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  23. Parada, L. F., Tabin, C. J., Shih, C., and Weinberg, R. A., 1982, Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene, Nature 297:474–478.PubMedCrossRefGoogle Scholar
  24. Powers, S., Kataoka, T., Fasano, O., Goldfarb, M., Strathern, J., and Wigler, M., 1984, Genes in S. cerevisiae encoding proteins with domains homologous to the mammalian ras proteins, Cell 36:607–612.PubMedCrossRefGoogle Scholar
  25. Quigley, J. P., 1979, Phorbol ester-induced morphological changes in transformed chick fibroblasts: Evidence for direct catalytic involvement of plasminogen activator, Cell 17:131–141.PubMedCrossRefGoogle Scholar
  26. Reddy, E. P., Reynolds, R. K., and Barbacid, M., 1982, A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene, Nature 300:149–152.PubMedCrossRefGoogle Scholar
  27. Rigby, P. W. J., Dieckmann, M., Rhodes, C., and Berg, P., 1977, Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I, J. Mol. Biol. 113:237–251.PubMedCrossRefGoogle Scholar
  28. Ruley, H. E., 1983, Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture, Nature 304:602–606.PubMedCrossRefGoogle Scholar
  29. Sawey, M. J., Hood, A. T., Burns, F. J., and Garte, S. J., 1987, Activation of c-myc and c-K-ras oncogenes in primary rat tumors induced by ionizing radiation, Mol. Cell Biol. 7:932–935.PubMedGoogle Scholar
  30. Southern, E. M., 1975, Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol. 98:503–517.PubMedCrossRefGoogle Scholar
  31. Southern, P. J., and Berg, P., 1982, Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter, J. Mol. Appl. Genet. 1:327–341.PubMedGoogle Scholar
  32. Spandidos, D. A., and Wilkie, N. M., 1984, Malignant transformation of early passage rodent cells by a single mutated human oncogene, Nature 310:469–475.PubMedCrossRefGoogle Scholar
  33. Sweet, R. W., Yokoyama, S., Kamata, T., Feramisco, J. R., and Gross, M., 1984, The product of ras is a GTPase and the T24 oncogenic mutant is deficient in this activity, Nature 311:273–275.PubMedCrossRefGoogle Scholar
  34. Tabin, C. J., Bradley, S. M., Bargmann, C. I., Weinberg, R. A., Papageorge, A. G., Scolnick, E. M., Dhar, R., and Chang, E. H., 1982, Mechanism of activation of a human oncogene, Nature 300:143–149.PubMedCrossRefGoogle Scholar
  35. Troll, W., and Wiesner, R., 1984, Protease inhibitors as anticarcinogens, J. Natl. Cancer Inst. 73:1245–1250.PubMedGoogle Scholar
  36. Wahl, G. M., Stern, M., and Stark, G. R., 1979, Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate, Proc. Natl. Acad. Sci. USA 76:3683–3687.PubMedCrossRefGoogle Scholar
  37. Weinberg, R. A., 1985, The action of oncogenes in the cytoplasm and nucleus, Science 230:770–776.PubMedCrossRefGoogle Scholar
  38. Wigler, M., Pellicer, A., Silverstein, S., Axel, R., Urlaub, G., and Chasin, L., 1979, DNA-mediated transfer of the adenine phosphoribosyltransferase focus into mammalian cells, Proc. Natl. Acad. Sci. USA 76:1373–1376.PubMedCrossRefGoogle Scholar
  39. Williams, J. G., and Mason, P. J., 1985, Hybridization in the analysis of RNA, in: Nucleic Acid Hybridization: A Practical Approach (B.D. James and S. J. Higgins, eds.), IRL Press, Oxford, pp. 139–148.Google Scholar
  40. Yavelow, J., Finlay, T.H., and Troll, W., 1983, Bowman-Birk soybean protease inhibitor as an anticarcinogen, Cancer Res. 43:2454s–2459s.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Seymour J. Garte
    • 1
  • Lydia Cox
    • 1
  • Diane C. Currie
    • 1
  • Joan Motz
    • 1
  • Walter Troll
    • 1
  1. 1.Department of Environmental MedicineNew York University Medical CenterNew YorkUSA

Personalised recommendations