Skip to main content

Elastic Properties of Connecting Filaments Along the Sarcomere

  • Chapter
Mechanism of Myofilament Sliding in Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 332))

Abstract

The elasticity of the connecting filament—the filament that anchors the thick filament to the Z-line—has been investigated using rigor release, freeze-break and immunolabelling techniques. When relaxed insect flight muscle was stretched and then allowed to go into rigor, then released, the recoil forces of the connecting filaments caused sarcomeres to shorten. Thin filaments, prevented from sliding by rigor links, were found crumpled against the Z-line. Thus, rigor release experiments demonstrate the spring-like nature of the connecting filaments in insect flight muscle.

In vertebrate skeletal muscle, however, the same protocol did not result in sarcomere shortening. Absence of shortening was due to either smaller stiffness of connecting filaments and/or higher stiffness of the thin filaments relative to insect flight muscle. The spring-like nature of the connecting filament was confirmed with the freeze break technique. When the frozen sarcomeres were broken along the A-I junction, the broken connecting filaments retracted to the Ni-line level, independently of the thin filaments, demonstrating the basic elastic nature of these filaments.

To study the elastic properties of the connecting filaments along the sarcomere, the muscle was labelled with monoclonal antibodies against a titin epitope near the Ni-line, and another very near the A-I junction in the I-band. Before labelling, fibers were pre-stretched to varying extents. Based on filament retraction and epitope translation with stretch, we could conclude: (1) the A-band domain of the connecting filament is ordinarily bound to the thick filaments; (2) at higher degrees of stretch, connecting filaments become free of the thick filaments, and the freed segments are intrinsically elastic; (3) between the A-I junction and the N1-line, connecting filaments behave independently of thin filaments; between N1- and Z-lines, however, they are firmly associated with the thin filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang, K. in Cell and Muscle Motility (ed. Shay, J. W.) 312–369 (Plenum Press, New York, 1985).

    Google Scholar 

  2. Maruyama, K. Int. Rev. Cytol. 104, 81–114 (1986).

    Article  PubMed  CAS  Google Scholar 

  3. Bullard, B., Hammond, K.A. & Luke, B.M. J. Mol. Biol. 115, 417–440 (1977).

    Article  PubMed  CAS  Google Scholar 

  4. Saide, J.D. J. Mol. Biol. 153, 661–679 (1981).

    Article  PubMed  CAS  Google Scholar 

  5. Nave, R. & Weber, K. J. Cell Sci. 95, 535–544 (1990).

    PubMed  CAS  Google Scholar 

  6. Hu, D.H., Matsuno, A., Terakado, K., Matsuura, T., Kimura, S. & Maruyama, K. J. Muscle Res. Cell Motility 11, 497–511 (1990).

    Article  CAS  Google Scholar 

  7. Fürst, D.O., Osborn, M., Nave, R. & Weber, K. J. Cell Biol. 106, 1563–1572 (1988).

    Article  PubMed  Google Scholar 

  8. Yoshioka, T., Higuchi, H., Kimura, S., Ohashi, K., Umazume, Y. & Maruyama, K. Biomed. Res. 7, 181–186 (1986).

    CAS  Google Scholar 

  9. Funatsu, T., Higuchi, H. & Ishiwata S. J. Cell Biol. 110, 53–62 (1990).

    Article  PubMed  CAS  Google Scholar 

  10. Horowits, R. & Podolsky, R.J. J. Cell Biol. 105, 2217–2223 (1987).

    Article  PubMed  CAS  Google Scholar 

  11. Wang, K., Wright, J. & Ramirez-Mitchell, R. J. Cell Biol. 99, 435a. (Abstract) (1984).

    Google Scholar 

  12. Itoh, Y., Suzuki, T., Kimura, S., Ohashi, K., Higuchi, H., Sawada, H., Shimizu, T., Shibata M. & Maruyama K. J. Biochem. (Tokyo) 104, 504–508 (1988).

    CAS  Google Scholar 

  13. Pierobon-Bormioli, S., Betto, R. & Salviati G. J. Muscle Res. Cell Motility 10, 446–456 (1990).

    Google Scholar 

  14. Whiting, A., Wardale, J. & Trinick, J. J. Mol. Biol. 205, 263–268 (1988).

    Article  Google Scholar 

  15. Fürst, D.O., Nave, R., Osborn M. & Weber K. J. Cell Sci. 94, 119–125 (1989).

    PubMed  Google Scholar 

  16. Reedy, M.K. in Contractility of Muscle Cell and Related Process (ed. Podolsky, R. J.) 229–246 (Prentice-Hall, Inc., New York, 1971).

    Google Scholar 

  17. White, D.C.S. & Thorson, J. Prog. Biophys. 27, 173–255.

    Google Scholar 

  18. Trombitás, K. & Tigyi-Sebes, A. in Insect Flight Muscle (ed. Tregear, R. T.) 79–90 (Elsevier, 1977).

    Google Scholar 

  19. Trombitás, K. & Pollack, G.H. in Molecular Mechanism of Muscle Contraction (eds. Sugi, H. and Pollack, G. H.) 17–30 (Plenum Press, New York, 1988

    Google Scholar 

  20. Pollack, G.H. in Muscles and Molecules, 61–81 (Ebner and Sons, Seattle, 1990).

    Google Scholar 

  21. La Salle, F., Robson, R.M., Lusby, M.L., Parrish, F.C., Stromer, H.M. & Huiatt, T.W. J. CellBiol. 97, 258a (1983).

    Article  Google Scholar 

  22. Trombitás, K., Baatsen, P.H.W.W., Kellermayer, M.S.Z. & Pollack, G.H. J. Cell Sci., 100, 809–814 (1992).

    Google Scholar 

  23. Wang, K. & Wright, J. Biophys. J. 53, 25a (1988).

    Article  Google Scholar 

  24. Maruyama, K., Matsuno, A., Higuchi, H., Shimaoka, S., Kimura S. & Shimizu T. J. Muscle Res. Cell Motility 10, 350–359 (1989).

    Article  CAS  Google Scholar 

  25. Trombitás, K., Pollack, G.H., Wright, J. & Wang, K. (submitted).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Trombitás, K., Pollack, G.H. (1993). Elastic Properties of Connecting Filaments Along the Sarcomere. In: Sugi, H., Pollack, G.H. (eds) Mechanism of Myofilament Sliding in Muscle Contraction. Advances in Experimental Medicine and Biology, vol 332. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2872-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2872-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6245-6

  • Online ISBN: 978-1-4615-2872-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics