Elastic Properties of Connecting Filaments Along the Sarcomere

  • Károly Trombitás
  • Gerald H. Pollack
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 332)


The elasticity of the connecting filament—the filament that anchors the thick filament to the Z-line—has been investigated using rigor release, freeze-break and immunolabelling techniques. When relaxed insect flight muscle was stretched and then allowed to go into rigor, then released, the recoil forces of the connecting filaments caused sarcomeres to shorten. Thin filaments, prevented from sliding by rigor links, were found crumpled against the Z-line. Thus, rigor release experiments demonstrate the spring-like nature of the connecting filaments in insect flight muscle.

In vertebrate skeletal muscle, however, the same protocol did not result in sarcomere shortening. Absence of shortening was due to either smaller stiffness of connecting filaments and/or higher stiffness of the thin filaments relative to insect flight muscle. The spring-like nature of the connecting filament was confirmed with the freeze break technique. When the frozen sarcomeres were broken along the A-I junction, the broken connecting filaments retracted to the Ni-line level, independently of the thin filaments, demonstrating the basic elastic nature of these filaments.

To study the elastic properties of the connecting filaments along the sarcomere, the muscle was labelled with monoclonal antibodies against a titin epitope near the Ni-line, and another very near the A-I junction in the I-band. Before labelling, fibers were pre-stretched to varying extents. Based on filament retraction and epitope translation with stretch, we could conclude: (1) the A-band domain of the connecting filament is ordinarily bound to the thick filaments; (2) at higher degrees of stretch, connecting filaments become free of the thick filaments, and the freed segments are intrinsically elastic; (3) between the A-I junction and the N1-line, connecting filaments behave independently of thin filaments; between N1- and Z-lines, however, they are firmly associated with the thin filaments.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang, K. in Cell and Muscle Motility (ed. Shay, J. W.) 312–369 (Plenum Press, New York, 1985).Google Scholar
  2. 2.
    Maruyama, K. Int. Rev. Cytol. 104, 81–114 (1986).PubMedCrossRefGoogle Scholar
  3. 3.
    Bullard, B., Hammond, K.A. & Luke, B.M. J. Mol. Biol. 115, 417–440 (1977).PubMedCrossRefGoogle Scholar
  4. 4.
    Saide, J.D. J. Mol. Biol. 153, 661–679 (1981).PubMedCrossRefGoogle Scholar
  5. 5.
    Nave, R. & Weber, K. J. Cell Sci. 95, 535–544 (1990).PubMedGoogle Scholar
  6. 6.
    Hu, D.H., Matsuno, A., Terakado, K., Matsuura, T., Kimura, S. & Maruyama, K. J. Muscle Res. Cell Motility 11, 497–511 (1990).CrossRefGoogle Scholar
  7. 7.
    Fürst, D.O., Osborn, M., Nave, R. & Weber, K. J. Cell Biol. 106, 1563–1572 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    Yoshioka, T., Higuchi, H., Kimura, S., Ohashi, K., Umazume, Y. & Maruyama, K. Biomed. Res. 7, 181–186 (1986).Google Scholar
  9. 9.
    Funatsu, T., Higuchi, H. & Ishiwata S. J. Cell Biol. 110, 53–62 (1990).PubMedCrossRefGoogle Scholar
  10. 10.
    Horowits, R. & Podolsky, R.J. J. Cell Biol. 105, 2217–2223 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    Wang, K., Wright, J. & Ramirez-Mitchell, R. J. Cell Biol. 99, 435a. (Abstract) (1984).Google Scholar
  12. 12.
    Itoh, Y., Suzuki, T., Kimura, S., Ohashi, K., Higuchi, H., Sawada, H., Shimizu, T., Shibata M. & Maruyama K. J. Biochem. (Tokyo) 104, 504–508 (1988).Google Scholar
  13. 13.
    Pierobon-Bormioli, S., Betto, R. & Salviati G. J. Muscle Res. Cell Motility 10, 446–456 (1990).Google Scholar
  14. 14.
    Whiting, A., Wardale, J. & Trinick, J. J. Mol. Biol. 205, 263–268 (1988).CrossRefGoogle Scholar
  15. 15.
    Fürst, D.O., Nave, R., Osborn M. & Weber K. J. Cell Sci. 94, 119–125 (1989).PubMedGoogle Scholar
  16. 16.
    Reedy, M.K. in Contractility of Muscle Cell and Related Process (ed. Podolsky, R. J.) 229–246 (Prentice-Hall, Inc., New York, 1971).Google Scholar
  17. 17.
    White, D.C.S. & Thorson, J. Prog. Biophys. 27, 173–255.Google Scholar
  18. 18.
    Trombitás, K. & Tigyi-Sebes, A. in Insect Flight Muscle (ed. Tregear, R. T.) 79–90 (Elsevier, 1977).Google Scholar
  19. 19.
    Trombitás, K. & Pollack, G.H. in Molecular Mechanism of Muscle Contraction (eds. Sugi, H. and Pollack, G. H.) 17–30 (Plenum Press, New York, 1988Google Scholar
  20. 20.
    Pollack, G.H. in Muscles and Molecules, 61–81 (Ebner and Sons, Seattle, 1990).Google Scholar
  21. 21.
    La Salle, F., Robson, R.M., Lusby, M.L., Parrish, F.C., Stromer, H.M. & Huiatt, T.W. J. CellBiol. 97, 258a (1983).CrossRefGoogle Scholar
  22. 22.
    Trombitás, K., Baatsen, P.H.W.W., Kellermayer, M.S.Z. & Pollack, G.H. J. Cell Sci., 100, 809–814 (1992).Google Scholar
  23. 23.
    Wang, K. & Wright, J. Biophys. J. 53, 25a (1988).CrossRefGoogle Scholar
  24. 24.
    Maruyama, K., Matsuno, A., Higuchi, H., Shimaoka, S., Kimura S. & Shimizu T. J. Muscle Res. Cell Motility 10, 350–359 (1989).CrossRefGoogle Scholar
  25. 25.
    Trombitás, K., Pollack, G.H., Wright, J. & Wang, K. (submitted).Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Károly Trombitás
    • 1
  • Gerald H. Pollack
    • 1
  1. 1.Bioengineering WD-12University of WashingtonSeattleUSA

Personalised recommendations