Skip to main content

Force Response of Unstimulated Intact Frog Muscle Fibres to Ramp Stretches

  • Chapter
Mechanism of Myofilament Sliding in Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 332))

Abstract

The possibility that weakly binding bridges are attached to actin in the absence of Ca2+ under physiological conditions was investigated by studying the force response of unstimulated intact muscle fibres of the frog to fast ramp stretches. The force response during the stretching period is divided into two phases: phase 1, coincident with the acceleration period of the sarcomere length change and phase 2, syncronous with sarcomere elongation at constant speed. The phase 1 amplitude increases linearly with the stretching speed in all the range tested, while phase 2 increases with the speed but reaches a plateau level at about 50×103 nm/half sarcomere per second. The analysis of data shows that phase 1, which corresponds to the initial 5–10 nm/half sarcomere of elongation, is very likely a pure viscous response; its amplitude increases with sarcomere length and it is not affected by the electrical stimulation of the fibre. Phase 2 is a viscoelastic response with a relaxation time of the order of 1 ms; its amplitude increases with sarcomere lengths and with the stimulation. These data suggest that weakly binding bridges are not present in a significant amount in unstimulated intact fibres..

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brenner, B., Schoenberg, M., Chalovich, J.M., Greene, L.E. & Eisenberg, E. Proc. Natl. Acad. Sci. USA., 7288–7291 (1982).

    Google Scholar 

  2. Yanagida, T., Kuranaga, I. & Inoue, A. J. Biochem. 92, 407–412 (1982).

    PubMed  CAS  Google Scholar 

  3. Stein, L.A., Schwarz, R.P., Chock, P.B. & Eisenberg, E. Biochemistry 18, 3895–3909 (1979).

    Article  PubMed  CAS  Google Scholar 

  4. Hibberd, M.G. & Trentham, D.R. Ann. Rev. Biophys. Chem. 15, 119–161 (1986).

    Article  CAS  Google Scholar 

  5. Schoenberg, M. in: Molecular Mechanism of Muscle Contraction (eds. Sugi, H. & Pollack, G.H.) 189–202, (Plenum Publishing Corp., New York, 1988).

    Google Scholar 

  6. Brenner, B. in: Molecular Mechanisms in Muscular Contraction (ed. Squire, J.M.) 77–149 (The Macmillan Press LTD, Southampton, G.B., 1990).

    Google Scholar 

  7. Bagni, M.A., Cecchi, G. & Colomo, F. J. Muscle Res. Cell Motility 6, 102 (1985).

    Google Scholar 

  8. Hill, D.K. J. Physiol. Lond. 199, 673–684 (1968).

    Google Scholar 

  9. Ford, L.E., Huxley, A.F. & Simmons, R.M. J. Physiol. (Lond.) 269, 441–515 (1977).

    CAS  Google Scholar 

  10. Katz, B. J. Physiol. (Lond.) 96, 45–64 (1939).

    CAS  Google Scholar 

  11. Schoenberg, M. Biophys. J. 48, 467–475 (1985).

    Article  PubMed  CAS  Google Scholar 

  12. Schoenberg, M. Biophys. J. 54, 135–148 (1988).

    Article  PubMed  CAS  Google Scholar 

  13. Huxley, A.F. in: Reflections on muscle. (Liverpool University Press, 1980).

    Google Scholar 

  14. Harford, J. & Squire, J.M. in: Molecular Mechanisms in Muscular Contraction (ed. Squire J.M.) 287–320 (The Macmillan Press LTD, Southampton, G.B., 1990

    Google Scholar 

  15. Yu, L.C. & Podolsky, R. in: Molecular Mechanisms in Muscular Contraction (ed. Squire, J.M.) 265–286 (The Macmillan Press LTD, Southampton, G.B, 1990).

    Google Scholar 

  16. Umazume, Y., Higuchi, H. & Takemori, S. J. Muscle Res. Cell Motility 12, 466–471 (1991).

    Article  CAS  Google Scholar 

  17. Matsubara, I & Elliott, G.F. J. Mol. Biol. 72, 657–669 (1972).

    Article  PubMed  CAS  Google Scholar 

  18. Cecchi, G., Griffiths, P.J., Bagni, M.A., Ashley, C.C. & Maeda, Y. Science 250, 1409–1411 (1990).

    Article  PubMed  CAS  Google Scholar 

  19. Horowits, R. & Podolsky, R.J. J. Cell Biol. 105, 2217–2223 (1987).

    Article  PubMed  CAS  Google Scholar 

  20. Cecchi, G., Griffiths. P.J. & Taylor, S.R. Science 217, 70–72 (1982).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bagni, M.A., Cecchi, G., Colomo, F., Garzella, P. (1993). Force Response of Unstimulated Intact Frog Muscle Fibres to Ramp Stretches. In: Sugi, H., Pollack, G.H. (eds) Mechanism of Myofilament Sliding in Muscle Contraction. Advances in Experimental Medicine and Biology, vol 332. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2872-2_62

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2872-2_62

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6245-6

  • Online ISBN: 978-1-4615-2872-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics