Skip to main content

Determinants of Velocity of Sarcomere Shortening in Mammalian Myocardium

  • Chapter
Mechanism of Myofilament Sliding in Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 332))

Abstract

Maximal unloaded velocity of shortening of cardiac muscle (Vo) depends on the level of activation of the contractile filaments. We have tested the hypothesis that this dependence may be caused by viscous resistance of the muscle to length changes.

Twitch force (Fo) and sarcomere shortening were studied in trabeculae dissected from the right ventricle of rat myocardium, superfused with modified Krebs-Henseleit solution at 25°C. Sarcomere length (SL) was measured by laser diffraction techniques; force was measured by a silicon strain gauge; velocity of sarcomere shortening was measured using the “isovelocity release” technique.

Vo and Fo at slack SL were a sigmoidal function of [Ca2+]o, but Vo was more sensitive to [Ca2+]o (Km: 0.44 ± 0.04 mM) than isometric twitch force (Km: 0.68 ± 0.03 mM). At [Ca2+]o = 1.5 mM, Vo was independent of SL above 1.9 μm, but depended on SL at lower [Ca2+]o and always depended on SL < 1.9 μm. A constant relation was observed between Vo and Fo, irrespective whether Fo was altered by variation of [Ca2+]o or SL above slack length.

Visco-elastic properties of unstimulated muscles were studied at SL = 2.0 μm by small linear length changes at varied velocities up to 40 μm/s. The force response to stretch, after correction for the contribution of static parallel elasticity, consisted of an exponential increase of force (T = 4 ms) and an exponential decline after the stretch. This response would be expected from an arrangement of a viscous element in series with an elastic element. Viscous force increased in proportion to stretch velocity by 0.2– 0.5% of Fo/μm/s up to 15 μm/s, while the calculated stiffness of the elastic component was 25–45 N.mm-3, suggesting that the most likely structural candidate for this visco-elastic element is titin. Dynamic stiffness at 500 Hz was proportional to instantaneous force during shortening and was 12% of stiffness at maximal twitch force when shortening occurred at Vo. This suggests that the number of active force generators, even at maximal activation, is strongly reduced during shortening at Vo.

The observed relation between Vo and Fo could be explained by a model in which shortening velocity of the cardiac sarcomere depends on the level of activation and hence on the number of cross bridges supporting the viscous load.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Podolin, R.A. & Ford, L.E. J. Muscle Res. Cell Motility 4, 263–282 (1983).

    Article  CAS  Google Scholar 

  2. Daniels, M., Noble, M.I.M., ter Keurs, H.E.DJ. & Wohlfart, B. J. Physiol. (Lond.) 355, 367–381 (1984).

    CAS  Google Scholar 

  3. Edman, K.A.P. J. Physiol. (Lond.) 291, 143–159 (1979).

    CAS  Google Scholar 

  4. ter Keurs, H.E.D.J., Rijnsburger, W.H., van Heuningen, R. & Nagelsmit, M.J. Circ. Res. 46, 703–714 (1980).

    Article  PubMed  Google Scholar 

  5. Kentish, J.C., ter Kerus, H.E.DJ., Ricciardi, L., Bucx, J.J.J. & Noble, M.I.M. Circ. Res. 580, 755–768 (1986).

    Article  Google Scholar 

  6. de Tombe, P.P., Backx, P.H.M. & ter Keurs, H.E.D.J. Circulation 78, II-68, (Abstract) (1988).

    Google Scholar 

  7. de Tombe, P.P. & ter Keurs, H.E.D.J. Circ. Res. 66, 1239–1254 (1990c).

    Article  PubMed  Google Scholar 

  8. Hill, A.V. Proc. R. Soc. B 126, 136–195 (1938).

    Article  Google Scholar 

  9. de Tombe, P.P. & ter Keurs, H.E.D.J. Circ. Res. 68, 382–391 (1991a).

    Article  PubMed  Google Scholar 

  10. ter Keurs, H.E.D.J., de Tombe, P.P., Backx, P.H.M. & Iwazumi, T. Biorheology 28, 161–170 (1991).

    PubMed  Google Scholar 

  11. de Tombe, P.P. & ter Keurs, H.E.D.J. Circ. Res. 68, 588–596 (1991b).

    Article  PubMed  Google Scholar 

  12. Allen, D.G. & Kentish, J.C. J. Mol. Cell. Cardiol. 17, 821–840 (1985).

    Article  PubMed  CAS  Google Scholar 

  13. Hofmann, P.A. & Fuchs, F. J. Mol. Cell. Cardiol. 20, 667–677 (1988).

    Article  PubMed  CAS  Google Scholar 

  14. Gulati, J. & Babu, A. J. Gen. Physiol. 86, 479–500 (1985).

    Article  PubMed  CAS  Google Scholar 

  15. Chiu, Y.L., Ballou, E.W. & Ford, L.E. Circ. Res. 60, 446–458 (1987).

    Article  PubMed  CAS  Google Scholar 

  16. Tsuchiya, T. Biophys. J. 53, 415–423 (1988).

    Article  PubMed  CAS  Google Scholar 

  17. Chiu, Y.L., Ballou, E.W. & Ford, L.E. Biophys. J. 40, 109–120 (1982a).

    Article  PubMed  CAS  Google Scholar 

  18. Noble, M.I.M. Circ. Res. 40, 288–292 (1977).

    Article  PubMed  CAS  Google Scholar 

  19. Ford, L.E., Huxley, A.F. & Simmons, R.M. J. Physiol. (Lond.) 269, 441–515 (1977).

    CAS  Google Scholar 

  20. de Tombe, PP. & ter Keurs, H.E.D.J. J. Physiol. (Lond.) (submitted).

    Google Scholar 

  21. Ford, L.E., Huxley, A.F. & Simmons, R.M. J. Physiol. (Lond.) 361, 131–150 (1985).

    CAS  Google Scholar 

  22. Julian, F.J. & Sollins, M.R. J. Gen. Physiol. 66, 287–302 (1975).

    Article  PubMed  CAS  Google Scholar 

  23. Julian, F.J. & Morgan, D.L. J. Physiol. (Lond.) 319, 193–203 (1981).

    CAS  Google Scholar 

  24. Ford, L.E., Huxley, A.F. & Simmons, R.M. J. Physiol. (Lond.) 311, 219–249 (1981).

    CAS  Google Scholar 

  25. Haugen, P. In: Molecular Mechanism of Muscle Contraction, (eds. Sugi, H. & Pollack, G.H.) 461–469 (Plenum Press, 1988).

    Google Scholar 

  26. Chiu, Y.L., Ballou, E.W. & Ford, L.E. Biophys. J. 40, 121–128 (1982b).

    Article  PubMed  CAS  Google Scholar 

  27. Sonnenblick, E.H. Circ. Res. 16, 441–451 (1965).

    Article  PubMed  CAS  Google Scholar 

  28. Brutsaert, D.L., Claes, V.A. & Sonnenblick, E.H. Circ. Res. 29, 63–75 (1971).

    Article  PubMed  CAS  Google Scholar 

  29. Martyn, D.A., Rondinone, J.F. & Huntsman, L.L. Am. J. Physiol. 244, H708–H714 (1983).

    PubMed  CAS  Google Scholar 

  30. Brenner, B.M., Schoenberg, M., Chalovich, J.M., Greene, L.E. & Eisenberg, E. Proc. Natl. Acad. Sci. 79, 7288–7291 (1982).

    Article  PubMed  CAS  Google Scholar 

  31. Backx P.H. & ter Keurs H.E.D.J. Circulation 78 68 (1988).

    Article  Google Scholar 

  32. Wang, K. & Wright, J. The J. Cell Biol. 107, 2199–2212 (1988).

    Article  CAS  Google Scholar 

  33. Brady, A.J. Physiol. Rev. 71, 413–428 (1991).

    PubMed  CAS  Google Scholar 

  34. Fabiato, A. J. Gen. Physiol. 78, 457–497 (1981).

    Article  PubMed  CAS  Google Scholar 

  35. Schouten, V.J.A., Bucx, J.J.J., de Tombe, P.P. & ter Keurs, H.E.D.J. Circ. Res. 67, 913–922 (1990).

    Article  PubMed  CAS  Google Scholar 

  36. Huxley, A.F. Prog. Biophys. Biophys. Chem. 7, 255–318 (1957).

    PubMed  CAS  Google Scholar 

  37. Weber, A. & Murray, J.M. Physiol. Rev. 53, 612–673 (1973).

    PubMed  CAS  Google Scholar 

  38. Woledge, R.C., Curtin, N.A. & Homsher, E. Energetic Aspects of Muscle Contraction. (Academic Press, London, 1985).

    Google Scholar 

  39. Morimoto, K. & Harrington, W.F. J. Mol. Biol. 88, 693–709 (1974).

    Article  PubMed  CAS  Google Scholar 

  40. Haselgrove, J.C. J. Mol. Biol. 92, 113–143 (1975).

    Article  PubMed  CAS  Google Scholar 

  41. Lehman, W. Nature 274, 80–81 (1978).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

ter Keurs, H.E., de Tombe, P.P. (1993). Determinants of Velocity of Sarcomere Shortening in Mammalian Myocardium. In: Sugi, H., Pollack, G.H. (eds) Mechanism of Myofilament Sliding in Muscle Contraction. Advances in Experimental Medicine and Biology, vol 332. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2872-2_58

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2872-2_58

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6245-6

  • Online ISBN: 978-1-4615-2872-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics