Skip to main content

Mechanics and Structure of Cross-Bridges During Contractions Initiated by Photolysis of Caged Ca2+

  • Chapter
  • 183 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 332))

Abstract

Cross-bridge structure and mechanics were studied during development of skinned frog muscle fiber contractions initiated by photolysis of DM-nitrophen (a caged Ca2+). Stiffness rises earlier than tension following photo-release of Ca2+. A similar lead of stiffness in electrically stimulated fibers and the early rise of the I11/I10 ratio of equatorial X-ray reflections are thought to signal attachment of cross-bridges into states with lower force than in steady-state contraction. We investigated the structure of the early attachments by electron microscopy of fibers activated by photolysis of DM-nitrophen and then ultra-rapidly frozen and freeze substituted with tannic acid and OsO4. Sections from relaxed fibers show helical tracks of myosin heads on the thick filaments surface. Optical diffraction patterns show strong meridional intensities and layer lines up to the 6th order of 1/43 nm, indicating preservation and resolution of periodic structures smaller than 10 nm. Following photo-release of Ca2+, the 1/43 nm myosin layer line becomes less intense, and higher orders disappear. A ∼1/36 nm layer line appears early (12–15 ms) and becomes stronger at later times. The 1/14.3 nm meridional spot weakens initially and recovers at a later time, while it broadens laterally. The 1/43 nm meridional spot is present during contraction, but the 2nd order meridional spot (1/21.5 nm) is weak or absent. These results are consistent with time resolved X-ray diffraction data on the periodic structures within the fiber. In sections along the 1,1 plane of activated fibers, the individual cross-bridges have a wide range of shapes and angles, perpendicular to the fiber axis or pointing toward or away from the Z-line. Fibers frozen at 13 ms, 33 ms, and 220 ms after photolysis all show surprisingly similar cross-bridges. Thus, a highly variable distribution of cross-bridge shapes and angles is established early in contraction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hill, A.V. Proc. R. Soc. B 137, 320–329 (1950).

    Article  CAS  Google Scholar 

  2. Cecchi, G., Griffiths, P.J. & Taylor, S.R. Science 217, 70–72 (1982).

    Article  PubMed  CAS  Google Scholar 

  3. Ford, L.E., Huxley, A.F. & Simmons, R.M. J. Physiol. (Lond.) 372, 595–609 (1986).

    CAS  Google Scholar 

  4. Cecchi, G., Colomo, F., Lombardi, V. & Piazzesi, G. Pflügers Arch. 409, 39–46 (1987).

    Article  PubMed  CAS  Google Scholar 

  5. Cecchi, G., Griffiths, P.J., Bagni, M.A., Ashley, C.C. & Maéda, Y. Biophys. J. 59, 1273–1283 (1991).

    Article  PubMed  CAS  Google Scholar 

  6. Huxley, H.E. Acta Anat. Nippon. 50, 310–325 (1975).

    PubMed  CAS  Google Scholar 

  7. Huxley, H.E. in Cross-Bridge Mechanism in Muscle Contraction (eds. Sugi, H. & Pollack, G.H.) 391–405 (1979

    Google Scholar 

  8. Matsubara, I. & Yagi, N. J. Physiol. (Lond.) 278, 297–307 (1978).

    CAS  Google Scholar 

  9. Irving, M. J. Physiol. (Lond.) 353, 64P (1984).

    Google Scholar 

  10. Poole, K.J.V., Maéda, Y., Rapp, G. & Goody, R.S. Adv. Biophys. 27, 63–75 (1991).

    Article  PubMed  CAS  Google Scholar 

  11. Tsukita, S. & Yano, M. Nature 317, 182–184 (1985).

    Article  PubMed  CAS  Google Scholar 

  12. Hirose, K. & Wakabayashi, T. Adv. Biophys. 27, 197–203 (1991).

    Article  PubMed  CAS  Google Scholar 

  13. Lenart, T.D., Franzini-Armstrong C. & Goldman, Y.E. Biophys. J. 61, A286 (1992).

    Google Scholar 

  14. Padrön, R. & Huxley, H.E. J. Muscle Res. Cell Motility 5, 613–655 (1984).

    Article  Google Scholar 

  15. Goldman, Y.E. & Simmons, R.M. J. Physiol. (Lond.) 350, 497–518 (1984).

    CAS  Google Scholar 

  16. Chase, P.B. & Kushmerick, M.J. Biophys. J. 53, 935–946 (1988).

    Article  PubMed  CAS  Google Scholar 

  17. Cecchi, G., Colomo, F. & Lombardi, V. Bol. Soc. Ital. Biol. Sper. 52, 733–736 (1976).

    CAS  Google Scholar 

  18. Goldman, Y.E., Hibberd, M.G. & Trentham, D.R. J. Physiol. (Lond.) 354, 577–604 (1984).

    CAS  Google Scholar 

  19. Kaplan, J.H. & Ellis-Davies, G.C.R. Proc. Natl. Acad. Sci. USA 85, 6571–6575 (1988).

    Article  PubMed  CAS  Google Scholar 

  20. Goldman, Y.E. Biophys. J. 52, 57–68 (1987).

    Article  PubMed  CAS  Google Scholar 

  21. Fidler, N., Ellis-Davies, G., Kaplan, J.H. & McCray, J.A. Biophys. J. 53, 599a (1988).

    Google Scholar 

  22. Ashley, C.C, Mulligan, I.P. & Lea, T.J. Quart. Rev. Biophys. 24, 1–73 (1991).

    Article  CAS  Google Scholar 

  23. Heuser, J.E., Reese, T.S., Dennis, M.J., Jan, Y., Jan, L. & Evans, L. J. Cell Biol. 81, 275–300 (1979).

    Article  PubMed  CAS  Google Scholar 

  24. Padrón, R., Alamo, L., Craig, R. & Caputo, C. J. Microsc. 151, 81–102 (1988).

    Article  PubMed  Google Scholar 

  25. Huxley, H.E. & Brown, W. J. Mol. Biol. 30, 383–434 (1967).

    Article  PubMed  CAS  Google Scholar 

  26. Huxley, H.E., Faruqi, A.R., Kress, M., Bordas, J. & Koch, M.H.J. J. Mol. Biol. 158, 637–684 (1982).

    Article  PubMed  CAS  Google Scholar 

  27. Bordas, J., Diakun, G.P., Harries, J.E., Lewis, R.A., Mant, G.R., Martin-Fernandez, M.L. & Towns-Andrews, E. Adv. Biophys. 27, 15–33 (1991).

    Article  PubMed  CAS  Google Scholar 

  28. Reedy, M.K. Am. Zool. 7, 465–481 (1967).

    Google Scholar 

  29. Wakabayashi, K., Tanaka, H., Saito, H., Moriwaki, N., Ueno, Y. & Amemiya, Y. Adv. Biophys. 27, 3–13 (1991).

    Article  PubMed  CAS  Google Scholar 

  30. Yagi, N. Adv. Biophys. 27, 35–43 (1991).

    Article  PubMed  CAS  Google Scholar 

  31. Craig, R., Szent-Györgyi, A.G., Beese, L., Flicker, P., Vibert, P. & Cohen, C. J. Mol. Biol. 140, 35–55 (1980).

    Article  PubMed  CAS  Google Scholar 

  32. Varriano-Marston, E., Franzini-Armstrong, C. & Haselgrove, J.C. J. Muscle Res. Cell Motility 5, 363–386 (1984).

    Article  CAS  Google Scholar 

  33. Taylor, K.A., Reedy, M.C., Cordova, L. & Reedy, M.K. Nature 310, 285–291 (1984).

    Article  PubMed  CAS  Google Scholar 

  34. Reedy, M.K. & Reedy, M.C. J. Mol. Biol. 185, 145–176 (1985).

    Article  PubMed  CAS  Google Scholar 

  35. Bard, F., Franzini-Armstrong, C. & Ip, W. J. Cell Biol. 105, 2225–2234 (1987).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lenart, T.D. et al. (1993). Mechanics and Structure of Cross-Bridges During Contractions Initiated by Photolysis of Caged Ca2+ . In: Sugi, H., Pollack, G.H. (eds) Mechanism of Myofilament Sliding in Muscle Contraction. Advances in Experimental Medicine and Biology, vol 332. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2872-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2872-2_43

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6245-6

  • Online ISBN: 978-1-4615-2872-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics