Skip to main content

The First Thin Filament Layer Line Decreases in Intensity During an Isometric Contraction of Frog Skeletal Muscle

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 332))

Abstract

During isometric contraction/activation of full-overlap and non-overlap live frog skeletal muscles, the intensity of the first thin filament layer line at the axial spacing of ∼1/37 nm-1, when separated from the partially overlapping first thick filament layer-line at ∼1/43 nm-1, remained unchanged in the inner radial region (0.02–0.08 nm-1) where a large intensity increase is observed in the rigor state. The intensity decreased in the outer radial region (0.08–0.18 nm-1) where this layer line is expected to peak in the resting state. The intensity decrease in the outer region became larger with increasing filament overlap; on activation of the non-overlap muscle, it was about half that of the full-overlap muscle. Thus the first thin filament layer line decreases in intensity and any indication of the rigor-like intensification is not observed at all during contraction. This intensity decrease can be attributed to the same structural changes giving rise to the intensity increase of the second thin filament layer line.

The results indicate that the configuration of the myosin heads interacting with actin during contraction differs significantly from that of the rigor state. Four-fold rotational symmetry of the thin filament structure as a whole becomes more pronounced during isometric contraction of the overlap muscle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amemiya, Y., Wakabayashi, K., Tanaka, H., Ueno, Y. & Miyahara, J. Science 237, 164–168 (1987).

    Article  PubMed  CAS  Google Scholar 

  2. Wakabayashi, K., Ueno, Y., Amemiya, Y. & Tanaka, H. Adv. Exp. Med. Biol. 226, 353–367 (1988).

    PubMed  CAS  Google Scholar 

  3. Wakabayashi, K. & Amemiya, Y. in Handbook on Synchrotron Radiation Vol. 4 (eds. Ebashi, S., Koch, M. & Rubenstein, E.) 597–678 (North-Holland, Amsterdam, 1991).

    Google Scholar 

  4. Wakabayashi, K., Tanaka, H., Saito, H., Moriwaki, N., Ueno, Y. & Amemiya, Y. Adv. Biophys. 27, 3–13 (1991).

    Article  PubMed  CAS  Google Scholar 

  5. Huxley, H.E. & Brown, W. J. Mol. Biol. 30, 383–434 (1967).

    Article  PubMed  CAS  Google Scholar 

  6. Amemiya, Y., Wakabayashi, K., Hamanaka, T., Wakabayashi, T., Matsushita, T. & Hashizume, H. Nucl. Instrum. Methods 208, 471–477 (1983).

    Article  Google Scholar 

  7. Amemiya, Y. & Wakabayashi, K. Adv. Biophys. 27, 115–128 (1991).

    Article  PubMed  CAS  Google Scholar 

  8. Yagi, N. Adv. Biophys. 27, 35–43 (1991).

    Article  PubMed  CAS  Google Scholar 

  9. Yagi, N. & Matsubara, I. J. Mol. Biol. 208, 359–363 (1989).

    Article  PubMed  CAS  Google Scholar 

  10. Huxley, H.E., Faruqi, A.R., Kress, M., Bordas, J. & Koch, M.HJ. J. Mol. Biol. 158, 637–684 (1982).

    Article  PubMed  CAS  Google Scholar 

  11. Bordas, J., Diakun, G.P., Harries, J.E., Lewis, R.A., Mant, G.R., Martin-Fernandez, M.L. & Towns-Andrews, E. Adv. Biophys. 27, 15–33 (1991).

    Article  PubMed  CAS  Google Scholar 

  12. Yagi, N. & Matsubara, I. Science 207, 307–308 (1980).

    Article  PubMed  CAS  Google Scholar 

  13. Kress. M., Huxley, H.E., Faruqi, A.R. & Hendrix, J. J. Mol. Biol. 188, 325–342 (1986).

    Article  PubMed  CAS  Google Scholar 

  14. Maeda, Y., Popp, D. & McLaughlin, S.M. Adv. Exp. Med. Biol. 226, 381–390 (1988).

    PubMed  CAS  Google Scholar 

  15. Popp, D., Maeda, Y., Stewart, A.E.A. & Holmes, K.C. Adv. Biophys. 27, 89–103 (1991).

    Article  PubMed  CAS  Google Scholar 

  16. Tsukita, S. & Yano, M. Nature 317, 182–184 (1985).

    Article  PubMed  CAS  Google Scholar 

  17. Lenart, T.D., Allen, T.S., Barsotti, R.J., Ellis-Davies, G.C.R., Kaplan, J.H., Franzini-Armstrong, C. & Goldman, Y.E. This volume, 475-487.

    Google Scholar 

  18. Huxley, H.E., Kress, M., Faruqi, A.R. & Simmons, R.M. Adv. Exp. Med. Biol. 226, 347–352 (1988).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wakabayashi, K., Saito, H., Moriwaki, N., Kobayashi, T., Tanaka, H. (1993). The First Thin Filament Layer Line Decreases in Intensity During an Isometric Contraction of Frog Skeletal Muscle. In: Sugi, H., Pollack, G.H. (eds) Mechanism of Myofilament Sliding in Muscle Contraction. Advances in Experimental Medicine and Biology, vol 332. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2872-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2872-2_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6245-6

  • Online ISBN: 978-1-4615-2872-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics