Skip to main content

Time-Resolved Studies of Crossbridge Movement: Why Use X-Rays? Why Use Fish Muscle?

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 332))

Abstract

The advantages of using time-resolved X-ray diffraction as a means of probing myosin cross-bridge behaviour in active muscle are outlined, together with the reasons that bony fish muscle has advantages in such studies. We show that the observed X-ray diffraction patterns from fish muscle can be analysed in a way that is rigorous enough to allow reliable information about crossbridge activity to be defined. Among the advantages of this muscle are that diffraction patterns from resting, active and rigor muscles are all well-sampled at least out to the 30 row-line, that the resting myosin layer-line pattern can be’ solved’ crystallographically to define the starting position of the crossbridges in resting muscle, and that the equatorial intensity distribution, which in all patterns from vertebrate skeletal muscles comprises overlapping peaks from the A-band and the Z-band, can be analysed sufficiently rigorously to allow separation of the the two patterns, both of which change when the muscle is active. Finally, we present results both on a new set of myosin-based layer-lines in patterns from active muscle (consistent with the presence of low-force bridges as also indicated by the time-courses of the intensity changes on the equator and the changing mass distribution in the A-band unit cell) and also on changes of the actin-based layer-lines (consistent with stereospecific labelling of the actin filaments by force-producing crossbridges). Our results to date, which demonstrate the enormous power of time-resolved X-ray diffraction studies, strongly support the swinging of myosin heads on actin as part of the contractile cycle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huxley, A.F. Prog. Biophys. 7, 255–313 (1957).

    CAS  Google Scholar 

  2. Huxley, H.E. Science 164, 1356–1366 (1969).

    Article  PubMed  CAS  Google Scholar 

  3. Squire, J.M. in The Structural Basis of Muscular Contraction. (Plenum Press, New York, 1981).

    Book  Google Scholar 

  4. Squire, J.M. in Molecular Mechanisms in Muscular Contraction (Macmillan, 1990).

    Google Scholar 

  5. Irving, M. in Fibrous Protein Structure (eds Squire, J.M. & Vibert, P.J. Academic Press, 1987).

    Google Scholar 

  6. Curmi, P M.G., Stone, D.B., Schneider, D.K., Spudich, J.A. & Mendelson, R.A. J. Mol. Biol. 203, 781–798 (1988).

    Article  PubMed  CAS  Google Scholar 

  7. Sjostrom, M., Squire, J.M., Luther, P.K., Morris, E.P. & Edman, A.-C. J. Microsc. 163, 29–42 (1991).

    Article  PubMed  CAS  Google Scholar 

  8. Padron, R., Alamo, R., Craig, R. & Caputo, C. J. Microsc. 151, 81–102 (1988).

    Article  PubMed  CAS  Google Scholar 

  9. Morris, E.P., Nneji, G. & Squire, J.M. J. Cell Biol. 111, 2961–2978 (1990).

    Article  PubMed  CAS  Google Scholar 

  10. Cooke, R., Crowder, M. S. & Thomas, D.D. Nature 300, 776–778 (1982).

    Article  PubMed  CAS  Google Scholar 

  11. Huxley, H.E. & Brown, W. J. Mol. Biol. 30, 383–434 (1967).

    Article  PubMed  CAS  Google Scholar 

  12. Worcester, D.L., Gillis, J.M., O’Brien, E.J. & Ibel, K. Brookhaven Symp. Biol. 27, 101–114 (1975).

    Google Scholar 

  13. Huxley, H.E., Faruqi, A.R., Bordas, J., Koch, M.H.J. & Milch, J.R. Nature 284, 140–143 (1980).

    Article  PubMed  CAS  Google Scholar 

  14. Huxley, H.E., Faruqi, A.R., Kress, M., Bordas, J. & Koch, M.H.J. J. Mol. Biol. 158, 637–684 (1982).

    Article  PubMed  CAS  Google Scholar 

  15. Bordas, J., Diakun, G.P., Harries, J.E., Lewis, R.A., Mant, G.R., Martinez-Fernandez, M.L. & Towns-Andrews, E. Adv.Biophys., 27, 15–33 (1991).

    Google Scholar 

  16. Harford, J.J. & Squire, J.M. in Molecular Mechanisms in Muscular Contraction (ed Squire, J.M.) 287–320 (Macmillan Press, 1990).

    Google Scholar 

  17. Wakabayashi, K., Ueno, Y., Amemiya, Y. & Tanaka, H. in Molecular Mechanisms of Muscle Contraction (eds Sugi, H. & Pollack, G.H.) 353–367 (Plenum London, 1988).

    Google Scholar 

  18. Wakabayashi, K., Tanaka, H., Amemiya, Y., Fujishima, A., Kobayashi, T., Sugi, H. & Mitsui, T. Biophys. J. 47, 847 (1985).

    Article  PubMed  CAS  Google Scholar 

  19. Elliott, G.F., Lowy, J. & Worthington, C.R. J. Mol. Biol. 6, 295–305 (1963).

    Article  Google Scholar 

  20. Huxley, H.E. J. Mol. Biol. 37, 507–520 (1968).

    Article  PubMed  CAS  Google Scholar 

  21. Haselgrove, J.C. Cold Spring Harbor Symp. Quant. Biol. 37, 341–352 (1973).

    Article  CAS  Google Scholar 

  22. Huxley, H.E. Cold Spring Harbor Symp. Quant. Biol. 37, 361–376 (1973).

    Article  CAS  Google Scholar 

  23. Huxley, H.E. & Kress, M. J. Muscle Res. Cell Motility 6, 153–161 (1985).

    Article  CAS  Google Scholar 

  24. Squire, J.M. Ann. Rev Biophys. Bioeng. 4, 137–163 (1975).

    Article  CAS  Google Scholar 

  25. Luther, P.K. & Squire, J.M. J. Mol. Biol. 141, 409–439 (1980).

    Article  PubMed  CAS  Google Scholar 

  26. Luther, P.K., Munro, P.M.G. & Squire, J.M. J. Mol. Biol. 151, 703–730 (1981).

    Article  PubMed  CAS  Google Scholar 

  27. Harford, J.J. & Squire, J.M. Biophys. J., 63 (in press)

    Google Scholar 

  28. Lymn, R.W. Biophys. J. 21, 93–98 (1978).

    Article  PubMed  CAS  Google Scholar 

  29. Yu, L.C., Lymn, R.W. & Podolsky, R.J. J. Mol. Biol. 115, 455–464 (1977).

    Article  PubMed  CAS  Google Scholar 

  30. Squire, J.M., Harford, J.J., Chew, M.W.K. & Towns-Andrews, E. in Synchrotron Radiation Appendix to 1991 Daresbury Annual Report. 171 (1991)

    Google Scholar 

  31. Franks, N.P., Melchior, V., Kirschner, D.A. & Caspar, D.L.D. J. Mol. Biol. 155, 133–153 (1982).

    Article  PubMed  CAS  Google Scholar 

  32. Ford, L.E., Huxley, H.E. & Simmons, R.M. J. Physiol. (Lond.) 372, 595–609 (1986).

    CAS  Google Scholar 

  33. Bagni, M. A., Cecchi, G. & Schoenberg, M. Biophys. J. 54, 1105–1114 (1988).

    Article  PubMed  CAS  Google Scholar 

  34. Brenner, B., Schoenberg, M., Chalovich, J.M., Greene, L. & Eisenberg, E. Proc. Natl. Acad. Sci. U.S.A. 79, 7288–7291 (1982).

    Article  PubMed  CAS  Google Scholar 

  35. Brenner, B., Yu, L.C. & Podolsky, R.J. Biophys. J. 46, 299–306 (1984).

    Article  PubMed  CAS  Google Scholar 

  36. Matsubara, I., Yagi, N., Miura, H., Ozeki, M. & Izumi, T. Nature, Lond. 312, 471–473 (1984).

    Article  CAS  Google Scholar 

  37. Parry, D. A.D. & Squire, J.M. J. Mol. Biol. 75, 33–55 (1973)

    Article  PubMed  CAS  Google Scholar 

  38. Yagi, N. Biophysics 27, 35–43 (1991).

    CAS  Google Scholar 

  39. Yagi, N. & Matsubara, I. J. Mol. Biol. 208, 359–363 (1989).

    Article  PubMed  CAS  Google Scholar 

  40. Harford, J.J. & Squire, J.M. Biophys. J. 50, 145–150 (1986).

    Article  PubMed  CAS  Google Scholar 

  41. Squire, J.M. & Harford, J.J. J. Muscle Res. Cell Motility 9, 344–358 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Squire, J., Harford, J. (1993). Time-Resolved Studies of Crossbridge Movement: Why Use X-Rays? Why Use Fish Muscle?. In: Sugi, H., Pollack, G.H. (eds) Mechanism of Myofilament Sliding in Muscle Contraction. Advances in Experimental Medicine and Biology, vol 332. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2872-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2872-2_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6245-6

  • Online ISBN: 978-1-4615-2872-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics