Time-Resolved Studies of Crossbridge Movement: Why Use X-Rays? Why Use Fish Muscle?

  • John Squire
  • Jeff Harford
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 332)


The advantages of using time-resolved X-ray diffraction as a means of probing myosin cross-bridge behaviour in active muscle are outlined, together with the reasons that bony fish muscle has advantages in such studies. We show that the observed X-ray diffraction patterns from fish muscle can be analysed in a way that is rigorous enough to allow reliable information about crossbridge activity to be defined. Among the advantages of this muscle are that diffraction patterns from resting, active and rigor muscles are all well-sampled at least out to the 30 row-line, that the resting myosin layer-line pattern can be’ solved’ crystallographically to define the starting position of the crossbridges in resting muscle, and that the equatorial intensity distribution, which in all patterns from vertebrate skeletal muscles comprises overlapping peaks from the A-band and the Z-band, can be analysed sufficiently rigorously to allow separation of the the two patterns, both of which change when the muscle is active. Finally, we present results both on a new set of myosin-based layer-lines in patterns from active muscle (consistent with the presence of low-force bridges as also indicated by the time-courses of the intensity changes on the equator and the changing mass distribution in the A-band unit cell) and also on changes of the actin-based layer-lines (consistent with stereospecific labelling of the actin filaments by force-producing crossbridges). Our results to date, which demonstrate the enormous power of time-resolved X-ray diffraction studies, strongly support the swinging of myosin heads on actin as part of the contractile cycle.


Actin Filament Fish Muscle Sarcomere Length Myosin Head Myosin Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huxley, A.F. Prog. Biophys. 7, 255–313 (1957).Google Scholar
  2. 2.
    Huxley, H.E. Science 164, 1356–1366 (1969).PubMedCrossRefGoogle Scholar
  3. 3.
    Squire, J.M. in The Structural Basis of Muscular Contraction. (Plenum Press, New York, 1981).CrossRefGoogle Scholar
  4. 4.
    Squire, J.M. in Molecular Mechanisms in Muscular Contraction (Macmillan, 1990).Google Scholar
  5. 5.
    Irving, M. in Fibrous Protein Structure (eds Squire, J.M. & Vibert, P.J. Academic Press, 1987).Google Scholar
  6. 6.
    Curmi, P M.G., Stone, D.B., Schneider, D.K., Spudich, J.A. & Mendelson, R.A. J. Mol. Biol. 203, 781–798 (1988).PubMedCrossRefGoogle Scholar
  7. 7.
    Sjostrom, M., Squire, J.M., Luther, P.K., Morris, E.P. & Edman, A.-C. J. Microsc. 163, 29–42 (1991).PubMedCrossRefGoogle Scholar
  8. 8.
    Padron, R., Alamo, R., Craig, R. & Caputo, C. J. Microsc. 151, 81–102 (1988).PubMedCrossRefGoogle Scholar
  9. 9.
    Morris, E.P., Nneji, G. & Squire, J.M. J. Cell Biol. 111, 2961–2978 (1990).PubMedCrossRefGoogle Scholar
  10. 10.
    Cooke, R., Crowder, M. S. & Thomas, D.D. Nature 300, 776–778 (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    Huxley, H.E. & Brown, W. J. Mol. Biol. 30, 383–434 (1967).PubMedCrossRefGoogle Scholar
  12. 12.
    Worcester, D.L., Gillis, J.M., O’Brien, E.J. & Ibel, K. Brookhaven Symp. Biol. 27, 101–114 (1975).Google Scholar
  13. 13.
    Huxley, H.E., Faruqi, A.R., Bordas, J., Koch, M.H.J. & Milch, J.R. Nature 284, 140–143 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    Huxley, H.E., Faruqi, A.R., Kress, M., Bordas, J. & Koch, M.H.J. J. Mol. Biol. 158, 637–684 (1982).PubMedCrossRefGoogle Scholar
  15. 15.
    Bordas, J., Diakun, G.P., Harries, J.E., Lewis, R.A., Mant, G.R., Martinez-Fernandez, M.L. & Towns-Andrews, E. Adv.Biophys., 27, 15–33 (1991).Google Scholar
  16. 16.
    Harford, J.J. & Squire, J.M. in Molecular Mechanisms in Muscular Contraction (ed Squire, J.M.) 287–320 (Macmillan Press, 1990).Google Scholar
  17. 17.
    Wakabayashi, K., Ueno, Y., Amemiya, Y. & Tanaka, H. in Molecular Mechanisms of Muscle Contraction (eds Sugi, H. & Pollack, G.H.) 353–367 (Plenum London, 1988).Google Scholar
  18. Wakabayashi, K., Tanaka, H., Amemiya, Y., Fujishima, A., Kobayashi, T., Sugi, H. & Mitsui, T. Biophys. J. 47, 847 (1985).PubMedCrossRefGoogle Scholar
  19. 18.
    Elliott, G.F., Lowy, J. & Worthington, C.R. J. Mol. Biol. 6, 295–305 (1963).CrossRefGoogle Scholar
  20. 19.
    Huxley, H.E. J. Mol. Biol. 37, 507–520 (1968).PubMedCrossRefGoogle Scholar
  21. 20.
    Haselgrove, J.C. Cold Spring Harbor Symp. Quant. Biol. 37, 341–352 (1973).CrossRefGoogle Scholar
  22. 21.
    Huxley, H.E. Cold Spring Harbor Symp. Quant. Biol. 37, 361–376 (1973).CrossRefGoogle Scholar
  23. 22.
    Huxley, H.E. & Kress, M. J. Muscle Res. Cell Motility 6, 153–161 (1985).CrossRefGoogle Scholar
  24. 23.
    Squire, J.M. Ann. Rev Biophys. Bioeng. 4, 137–163 (1975).CrossRefGoogle Scholar
  25. 24.
    Luther, P.K. & Squire, J.M. J. Mol. Biol. 141, 409–439 (1980).PubMedCrossRefGoogle Scholar
  26. 25.
    Luther, P.K., Munro, P.M.G. & Squire, J.M. J. Mol. Biol. 151, 703–730 (1981).PubMedCrossRefGoogle Scholar
  27. 26.
    Harford, J.J. & Squire, J.M. Biophys. J., 63 (in press)Google Scholar
  28. 27.
    Lymn, R.W. Biophys. J. 21, 93–98 (1978).PubMedCrossRefGoogle Scholar
  29. 28.
    Yu, L.C., Lymn, R.W. & Podolsky, R.J. J. Mol. Biol. 115, 455–464 (1977).PubMedCrossRefGoogle Scholar
  30. 29.
    Squire, J.M., Harford, J.J., Chew, M.W.K. & Towns-Andrews, E. in Synchrotron Radiation Appendix to 1991 Daresbury Annual Report. 171 (1991)Google Scholar
  31. 30.
    Franks, N.P., Melchior, V., Kirschner, D.A. & Caspar, D.L.D. J. Mol. Biol. 155, 133–153 (1982).PubMedCrossRefGoogle Scholar
  32. 31.
    Ford, L.E., Huxley, H.E. & Simmons, R.M. J. Physiol. (Lond.) 372, 595–609 (1986).Google Scholar
  33. 32.
    Bagni, M. A., Cecchi, G. & Schoenberg, M. Biophys. J. 54, 1105–1114 (1988).PubMedCrossRefGoogle Scholar
  34. 33.
    Brenner, B., Schoenberg, M., Chalovich, J.M., Greene, L. & Eisenberg, E. Proc. Natl. Acad. Sci. U.S.A. 79, 7288–7291 (1982).PubMedCrossRefGoogle Scholar
  35. 34.
    Brenner, B., Yu, L.C. & Podolsky, R.J. Biophys. J. 46, 299–306 (1984).PubMedCrossRefGoogle Scholar
  36. 35.
    Matsubara, I., Yagi, N., Miura, H., Ozeki, M. & Izumi, T. Nature, Lond. 312, 471–473 (1984).CrossRefGoogle Scholar
  37. 36.
    Parry, D. A.D. & Squire, J.M. J. Mol. Biol. 75, 33–55 (1973)PubMedCrossRefGoogle Scholar
  38. 37.
    Yagi, N. Biophysics 27, 35–43 (1991).Google Scholar
  39. 38.
    Yagi, N. & Matsubara, I. J. Mol. Biol. 208, 359–363 (1989).PubMedCrossRefGoogle Scholar
  40. 39.
    Harford, J.J. & Squire, J.M. Biophys. J. 50, 145–150 (1986).PubMedCrossRefGoogle Scholar
  41. 40.
    Squire, J.M. & Harford, J.J. J. Muscle Res. Cell Motility 9, 344–358 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • John Squire
    • 1
  • Jeff Harford
    • 1
  1. 1.Biophysics SectionBlackett Laboratory Imperial CollegeLondonUK

Personalised recommendations