Skip to main content

Experiments on Rigor Crossbridge Action and Filament Sliding in Insect Flight Muscle

  • Chapter
Mechanism of Myofilament Sliding in Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 332))

Abstract

We have explored three aspects of rigor crossbridge action:

  1. 1.

    Under rigor conditions, slow stretching (2% per hour) of insect flight muscle (IFM) from Lethocerus causes sarcomere ruptures but never filament sliding. However, in 1 mM AMPPNP, slow stretching (5%/h) causes filament sliding but no sarcomere ruptures, although stiffness equals rigor values. Thus loaded rigor attachments in IFM show no strain relief over several hours, but near-rigor states that allow short-term strain relief indicate different grades of strongly bound bridges, and suggest approaches to annealing the rigor lattice.

  2. 2.

    Sarcomeres of Lethocerus flight muscle, stretched 20–60% and then rigorized, show “hybrid” crossbridge patterns, with overlap zones in rigor, but H-bands relaxed and revealing four-stranded R-hand helical thick filament structure. The sharp boundary exhibits precise phasing between relaxed and rigor arrays along each thick filament. Extrapolating one lattice into the other should allow detailed modeling of the action of each myosin head as it enters rigor.

  3. 3.

    The “A-(bee)-Z problem” exposes a conflict about actin rotational alignment between A-bands and Z-bands of bee IFM, raising the possibility that rigor induction might rotate actins forcefully from one pattern to the other. As Squire21) noted, 3-D reconstructions of Z-bands in relaxed bee IFM2) imply A-bands where actin target zones form rings rather than helices around thick filaments. However, we confirm Trombitás et al.23)24) that rigor crossbridges in bee IFM mark helically arrayed target zones. Moreover, we find that loose crossbridge interactions in relaxed bee IFM mark the same helical pattern. Thus no change of actin rotational alignment by rigor crossbridges seems necessary, but 3-D structure of IFM Z-bands should be re-evaluated regarding the apparent contradiction with A-band symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auber, J. C. R. Acad. Sci. (Paris) 264, 2916–2918 (1967).

    CAS  Google Scholar 

  2. Cheng, N.Q. & Deatherage, J.F. J. CellBiol. 108, 1761–1774 (1989).

    Article  CAS  Google Scholar 

  3. Haselgrove, J.C. & Reedy, M K. Biophys. J. 24, 713–728 (1978).

    Article  PubMed  CAS  Google Scholar 

  4. Morris, E.P., Squire, J.M. & Fuller, G.W. J. Struct. Biol. 107, 237–249 (1991).

    Article  Google Scholar 

  5. Padrón, R. & Craig, R. Biophys. J. 56, 927–933 (1989).

    Article  PubMed  Google Scholar 

  6. Reedy, M.C., Bullard, B., Leonard, K. & Reedy, M.K. J. Muscle Res. Cell Motility 12, 112 (1991).(Abstract)

    Google Scholar 

  7. Reedy, M.C., Magid, A.D. & Reedy, M.K. Biophys. J. 51, 220a (1987).(Abstract)

    Google Scholar 

  8. Reedy, M.C., Reedy, M.K. & Goody, R.S. J. Muscle Res. Cell Motility 4, 55–81 (1983).

    Article  CAS  Google Scholar 

  9. Reedy, M C., Reedy, M.K. & Goody, R.S. J. Muscle Res. Cell Motility 8, 473–503 (1987).

    Article  CAS  Google Scholar 

  10. Reedy, M.C., Reedy, M.K. & Tregear, R.T. J. Mol. Biol. 204, 357–383 (1988).

    Article  PubMed  CAS  Google Scholar 

  11. Reedy, M.K. Am. Zool. 7, 465–481 (1967).

    Google Scholar 

  12. Reedy, M.K. J. Mol. Biol. 31, 155–176 (1968).

    Article  PubMed  CAS  Google Scholar 

  13. Reedy, M.K., Goody, R.S., Hofmann, W. & Rosenbaum, G. J. Muscle Res. Cell Motility 4, 25–53 (1983).

    Article  CAS  Google Scholar 

  14. Reedy, M.K., Leonard, K.R., Freeman, R. & Arad, T. J. Muscle Res. Cell Motility 2, 45–64 (1981).

    Article  CAS  Google Scholar 

  15. Reedy, M.K. & Longley, W. Biophys. J. 51, 220a (1987).

    Google Scholar 

  16. Reedy, M.K., Lucaveche, C. & Popp, D. Biophys. J. 59, 579a (1991).

    Google Scholar 

  17. Reedy, M.K. & Reedy, M.C. J. Mol. Biol. 185, 145–176 (1985).

    Article  PubMed  CAS  Google Scholar 

  18. Schoenberg, M. Biophys. J. 48, 467–475 (1985).

    Article  PubMed  CAS  Google Scholar 

  19. Schoenberg, M. Biophys. J. 60, 679–689 (1991).

    Article  PubMed  CAS  Google Scholar 

  20. Somasundaram, B., Newport, A. & Tregear, R.T. J. Muscle Res. Cell Motility 10, 360–368 (1989).

    Article  CAS  Google Scholar 

  21. Squire, J.M. J. Muscle Res. CellMotility 13, 183–189 (1992).

    Article  CAS  Google Scholar 

  22. Taylor, K.A., Reedy, M.C, Reedy, M.K. & Crowther, R.A. J. Mol. Biol. (in press)

    Google Scholar 

  23. Trombitás, K., Baatsen, P.H. & Pollack, G.H. Adv. Exp. Med. Biol. 226, 17–30 (1988).

    PubMed  Google Scholar 

  24. Trombitás, K., Baatsen, P.H.W.W. & Pollack, G.H. J. Ultrastruct. Mol. Struct. Res. 100, 13–30 (1988).

    Article  PubMed  Google Scholar 

  25. Wray, J.S. Nature 280, 325–326 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reedy, M.K., Lucaveche, C., Reedy, M.C., Somasundaram, B. (1993). Experiments on Rigor Crossbridge Action and Filament Sliding in Insect Flight Muscle. In: Sugi, H., Pollack, G.H. (eds) Mechanism of Myofilament Sliding in Muscle Contraction. Advances in Experimental Medicine and Biology, vol 332. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2872-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2872-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6245-6

  • Online ISBN: 978-1-4615-2872-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics