Advertisement

Current X-Ray Diffraction Experiments using a Synchrotron Radiation Source

  • N. Yagi
  • S. Takemori
  • M. Watanabe
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 332)

Abstract

A Fuji imaging plate and synchrotron radiation are the most distinct innovations of the last twenty years in the X-ray diffraction experiments on biological materials. Here we present results of recent experiments on skeletal muscles made at Photon Factory, Tsukuba.

It is now possible to record a two-dimensional X-ray diffraction pattern from a rabbit or frog single skinned fiber with a 30-sec exposure. Although weaker compared with those from whole muscles, it shows layer-lines up to 5.1 nm. When the fiber is activated by Ca2+, the pattern changes in a way similar to that observed when a live muscle is electrically stimulated.

Use of single fibers makes various types of structural experiments much easier than using whole muscles or fiber bundles. Not only suitable for physiological experiments, better diffusion makes it also suitable for biochemical experiments using various kinds of labels.

Time-resolved experiments with imaging plates are possible by using an im aging-plate exchanger devised by Dr. Y. Amemiya. By combining this and a fast-acting mechanical shutter, it is possible to record a two-dimensional diffraction pattern from a frog whole muscle shortening at the maximum speed.

The pattern thus obtained shows weakening of the 5.1 and 5.9-nm actin layer-lines and the third (14.3 nm) and the sixth (7.2 nm) myosin meridional reflections, compared with the pattern from isometrically contracting muscles. On the other hand, the second meridional reflection from the thick filament is intensified. These results suggest very different arrangement of myosin heads during active shortening from that during isometric contraction.

Keywords

Isometric Contraction Thin Filament Imaging Plate Sarcomere Length Myosin Head 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amemiya, Y. & Wakabayashi, K. Adv. Biophys. 27, 115–128 (1991).PubMedCrossRefGoogle Scholar
  2. 2.
    Wakabayashi, K., Tanaka, H., Saito, H., Moriwaki, N., Ueno, Y., & Amemiya, Y. Adv. Biophys. 27, 3–13 (1991).PubMedCrossRefGoogle Scholar
  3. 3.
    Amemiya, Y., Wakabayashi, K., Hamanaka, T., Wakabayashi, T., Matsushita, T. & Hashizume, H. Nucl. Instr. Meth. 208, 471–477 (1983).CrossRefGoogle Scholar
  4. 4.
    Amemiya, Y., Wakabayashi, K., Tanaka, H., Ueno, Y. & Miyahara, J. Science 237, 164–168 (1987).PubMedCrossRefGoogle Scholar
  5. 5.
    Natori, R. Jikeikai Med. J. 33(suppl. 1), 1–74 (1986).Google Scholar
  6. 6.
    Rome, E., Offer, G. & Pepe, F.A. Nature New Biol. 244, 152–154 (1973).PubMedCrossRefGoogle Scholar
  7. 7.
    Rome, E., Hirabayashi, H. & Perry, S.V. Nature New Biol. 244, 154–155 (1973).PubMedGoogle Scholar
  8. 8.
    Magid, A. & Reedy, M.K. Biophys. J. 30, 27–40 (1980).PubMedCrossRefGoogle Scholar
  9. 9.
    Maeda, Y. Nature 277, 670–672 (1979).PubMedCrossRefGoogle Scholar
  10. 10.
    Matsuda, T. & Podolsky, RJ. Proc. Natl. Acad. Sci. U.S.A. 81, 2364–2368 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    Xu, S., Kress, M., Huxley, H.E. J. Muscle Res. Cell Motility 8, 39–54 (1987).CrossRefGoogle Scholar
  12. 12.
    Lymn R.W. & Huxley, H.E. Cold Spring Harbor Symp. Quant. Biol. 37, 449–453 (1973).CrossRefGoogle Scholar
  13. 13.
    Rodger, C.D. & Tregear, R.T. J. Mol. Biol. 86, 495–497 (1974).PubMedCrossRefGoogle Scholar
  14. 14.
    Goody, R.S., Holmes, K.C., Mannherz, H.G., Barrington-Leigh, J. & Rosenbaum, G. Biophys. J. 15, 687–705 (1975).PubMedCrossRefGoogle Scholar
  15. 15.
    Padron, R. & Huxley, H.E. J. Muscle Res. Cell Motility 5, 613–655 (1984).CrossRefGoogle Scholar
  16. 16.
    Goody, R.S., Reedy, M.C., Hofmann, W., Holmes, K.C. & Reedy, M.K. Biophys. J. 47, 151–169 (1985).PubMedCrossRefGoogle Scholar
  17. 17.
    Yanagida, T., Nakase, M., Nishiyama, K. & Oosawa, F. Nature 307, 58–60 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    Harada, Y., Sakurada, K., Aoki, T., Thomas, D.D. & Yanagida, T. J. Mol. Biol. 216, 49–68 (1990).PubMedCrossRefGoogle Scholar
  19. 19.
    Ueda, Q.P., Warrick, H.M., Krön, S.J. & Spudich, J.A. Nature 352, 307–311 (1991).CrossRefGoogle Scholar
  20. 20.
    Podolsky, R.J., St.Onge, R., Yu, L. & Lymn, R.W. Proc. natl Acad. Sci. U.S.A. 73, 813–817 (1976).PubMedCrossRefGoogle Scholar
  21. 21.
    Huxley, H.E. in Cross-bridge Mechanism in Muscle Contraction (eds. Sugi, H. & Pollack, G.H.) 391–405 (University of Tokyo Press, Tokyo, 1979Google Scholar
  22. 22.
    Podolsky, R.J. Nature 188, 666–668 (1960).PubMedCrossRefGoogle Scholar
  23. 23.
    Yagi, N. Photon Factory Activity Report 8, 302 (1990).Google Scholar
  24. 24.
    Huxley, H.E., Faruqi, A.R., Kress, M., Bordas, J. & Koch, M.H.J. J. Mol. Biol. 158, 637–684 (1982).PubMedCrossRefGoogle Scholar
  25. 25.
    Yagi, N., O’Brien, E.J. & Matsubara, I. Biophys. J. 33, 121–138 (1981).PubMedCrossRefGoogle Scholar
  26. 26.
    Huxley, H.E. & Brown, W. J. Mol. Biol. 30, 383–434 (1967).PubMedCrossRefGoogle Scholar
  27. 27.
    Matsubara, I., Yagi, N., Miura, H., Ozeki, M. & Izumi, T. Nature 312, 471–477 (1984).PubMedCrossRefGoogle Scholar
  28. 28.
    Kress, M., Huxley, H.E., Faruqi, A.R. & Hendrix, J. J. Mol. Biol. 188, 325–342 (1986).PubMedCrossRefGoogle Scholar
  29. 29.
    Matsubara, I., Yagi, N. & Hashizume, H. Nature 255, 728–729 (1975).PubMedCrossRefGoogle Scholar
  30. 30.
    Huxley, H.E., Simmons, R.M., Faruqi, A.R., Kress, M., Bordas, J. & Koch, M.HJ. J. Mol. Biol. 169, 469–506 (1983).PubMedCrossRefGoogle Scholar
  31. 31.
    Matsubara, I. & Yagi, N. J. Physiol. (Lond.) 360, 135–148 (1985).Google Scholar
  32. 32.
    Huxley, H.E., Kress, M., Faruqi, A.F. & Simmons, R.M. in Molecular Mechanism of Muscle Contraction (eds. Sugi, H. & Pollack, G.H.) 347–352 (Plenum Press, New York and London, 1988Google Scholar
  33. 33.
    Parry, D.A.D. & Squire, J.M. J. Mol. Biol. 75, 33–55 (1973).PubMedCrossRefGoogle Scholar
  34. 34.
    Huxley, A.F. Proc. R. Soc. Lond. B 183, 83–86 (1973).PubMedCrossRefGoogle Scholar
  35. 35.
    Huxley, A.F. Prog. Biophys. Biophys. Chem. 7, 255–318 (1957).PubMedGoogle Scholar
  36. 36.
    Haselgrove, J.C. J. Mol. Biol. 92, 113–143 (1975).PubMedCrossRefGoogle Scholar
  37. 37.
    Haselgrove, J.C. Cold Spring Harbor Symp. Quant. Biol. 37, 341–352 (1973).CrossRefGoogle Scholar
  38. 38.
    Huxley, H.E. Cold Spring Harbor Symp. Quant. Biol. 37, 361–376 (1973).CrossRefGoogle Scholar
  39. 39.
    Yagi, N. & Matsubara, I. J. Mol. Biol. 208, 359–363 (1989).PubMedCrossRefGoogle Scholar
  40. 40.
    Gordon, A.M. & Ridgeway, E.B. J. Gen. Physiol. 90, 321–340 (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • N. Yagi
    • 1
  • S. Takemori
    • 2
  • M. Watanabe
    • 2
  1. 1.Department of PharmacologyTohoku University School of MedicineJapan
  2. 2.Department of PhysiologyThe Jikei University School of MedicineJapan

Personalised recommendations