Time-Resolved Equatorial X-Ray Diffraction Measurements in Single Intact Muscle Fibres

  • P. J. Griffiths
  • C. C. Ashley
  • M. A. Bagni
  • G. Cecchi
  • Y. Maèda
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 332)


Equatorial X-ray diffraction techniques have been successfully applied to the intact single muscle fibre preparation under length clamp and “fixed end” conditions. 10 and 11 intensity changes and stiffness have been measured in the same preparation. Under isometric conditions, equatorial signals and stiffness led force by 14–20ms during the rise of tetanic tension. During relaxation, stiffness and equatorial signals lagged force. The time course of the intensity changes suggests a low force crossbridge state is present to a greater extent during the rise of tetanic tension and during relaxation than at the tetanus plateau. During isotonic shortening at Vmax, stiffness fell to 30% of its isometric level, while equatorial signals fell to 60%. Since stiffness and equatorial signals are thought to detect attached crossbridges, either the average stiffness per attached bridge measured at 4kHz during shortening is less than at the plateau, or the relation between equatorial intensities and the proportion of attached crossbridges during isotonic shortening differs from that measured under isometric conditions.

Active tension also affects the lattice spacing. The myosin lattice was compressed during the development of longitudinal force. This implies a radial component of crossbridge tension. The lattice compression was smaller in a compressed lattice and larger in an expanded lattice.


Axial Force Lattice Spacing Radial Force Sarcomere Length Lattice Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huxley, H.E. & Brown, W. J. Mol. Biol. 30, 383–434 (1967).PubMedCrossRefGoogle Scholar
  2. 2.
    Huxley, A.F. & Simmons, R.M. Nature 233, 533–538 (1971).PubMedCrossRefGoogle Scholar
  3. 3.
    Cecchi, G., Griffiths, P.J. & Taylor, S.R. in Contractile Mechanisms in Muscle (Eds. Pollack, G.H. and Sugi, H.) 641–655 (Plenum Publishing Corporation, 1984).Google Scholar
  4. 4.
    Ford, L.E., Huxley, A.F. & Simmons, R.M. J. Physiol. (Lond.) 269, 441–515 (1977)Google Scholar
  5. 5.
    Haselgrove, J.C. & Huxley, H.E. J. Mol. Biol. 92, 113–143 (1973).CrossRefGoogle Scholar
  6. 6.
    Yu, L.C., Hartt, J.E. & Podolsky, R.J. J. Mol. Biol. 132, 53–67 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    Cecchi, G. Arch. Ital. de Biol. 121, 215–217 (1983).Google Scholar
  8. 8.
    Cecchi, G., Colomo, F. & Lombardi, V. Boll Soc. Ital Biol. Sper., 52, 733–736 (1976).PubMedGoogle Scholar
  9. 9.
    Bagni, M.A., Cecchi, G. & Colomo, F. J. Physiol. (Lond.) 430, 61–75 (1990).Google Scholar
  10. 10.
    Cecchi, G., Griffiths, P.J., Bagni, M.A., Ashley, C.C. & Maéda, Y. Biophys. J. 59, 1273–1283 (1991).PubMedCrossRefGoogle Scholar
  11. 11.
    de Graaf, H. Acta Cryst. A45, 861–870 (1989).Google Scholar
  12. 12.
    Cecchi, G., Griffiths, P.J., Bagni, M.A., Ashley, C.C. & Maéda, Y. J. Physiol. (Lond.) 418, 58P (1989).Google Scholar
  13. 13.
    Konishi, M., Wakabayashi, K., Kurihara, S., Higuchi, H., Onodera, N., Umazume, Y., Tanaka, H., Hamnaka, T. & Amemiya, Y. Biophys. Chem. 39, 287–297 (1991).PubMedCrossRefGoogle Scholar
  14. 14.
    Irving, M., Mannson, A., Simmons, R.M., Piazessi G., Lombardi, V., Ferenczi, M.A. & Harries, J. J. Physiol. (Lond.) 438, 147P (1991).Google Scholar
  15. 15.
    Schoenberg, M. Biophys. J. 30, 69–78 (1980).PubMedCrossRefGoogle Scholar
  16. 16.
    Matsubara, I., Goldman, Y.E. & Simmons, R.M. J. Mol. Biol. 173, 15–33 (1984).PubMedCrossRefGoogle Scholar
  17. 17.
    Brenner, B. & Yu, L.C. Biophys. J. 48, 829–834 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    Matsubara, I., Umazume, Y. & Yagi, N. J. Physiol. (Lond.) 360, 135–148 (1985).Google Scholar
  19. 19.
    Irving, M., Lombardi, V., Piazzesi, G. & Ferenczi, M. Nature 357, 156–158 (1992).PubMedCrossRefGoogle Scholar
  20. 20.
    Cecchi, G., Bagni, M.A., Griffiths, P.J., Ashley, C.C. & Maéda, Y. Science 250, 1409–1411 (1990).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • P. J. Griffiths
    • 1
  • C. C. Ashley
    • 1
  • M. A. Bagni
    • 2
  • G. Cecchi
    • 2
  • Y. Maèda
    • 3
  1. 1.University Laboratory of PhysiologyOxfordUK
  2. 2.Dipartemento di Scienze FisiologicheUniversità degli Studi di FirenzeFlorenceItaly
  3. 3.EMBL Outstation Deutsches Elektronen Synchrotron52 HamburgGermany

Personalised recommendations