Advertisement

Crossbridge Rotation in EDC-Crosslinked Striated Muscle Fibers

  • H. Iwamoto
  • R. J. Podolsky
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 332)

Abstract

The rotatability of the strong- and weak-binding myosin heads was tested by stretching glycerinated rabbit psoas fibers after crosslinking the heads to actin by using a carbodiimide EDC. The equatorial 1,1 reflection intensity (I1,1) decreased by ∼10% upon 1% stretch in the presence of various ligands (ATP, ATP-γ-S, pyrophosphate and AMPPNP). As the action of ligands to dissociate actomyosin increased, the relaxation of tension response to stretch and the I1,1 decrease were accelerated. This result is best explained if the ligand converts the crosslinked head to a weak-binding state, in which the head is rotatable because of its acquired elasticity.

Conversely, the weak-to-strong transition was induced in the crosslinked system by removing a ligand (ATP-γ-S) from myosin. Force was produced upon weak-to-strong transition and was accounted for by the increased stiffness of each crosslinked myosin head. However, the comparison of stress-strain curves for the weak- and strong-binding myosin showed that the equilibrium angle of myosin attachment was unchanged, making it unlikely that the weak-to-strong transition is the sole mechanism for active contraction. The calcium-activated force of the same crosslinked fibers showed several features in marked contrast to the force produced by the weak-to-strong transition. This leads to a possibility that the active force is supported by a third class of intermediate which is distinct not only from the weak-binding but also from the strong-binding intermediates in a classical sense.

Keywords

Fiber Bundle Fiber Length Active Force Myosin Head Tension Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reedy, M.K., Holmes, K.A. & Tregear, R.T. Nature 207, 1276–1280 (1967).CrossRefGoogle Scholar
  2. 2.
    Huxley, H.E. Science 164, 1133–1136 (1969).CrossRefGoogle Scholar
  3. 3.
    Lymn, R.W. Biophys. J. 21, 93–98 (1978).PubMedCrossRefGoogle Scholar
  4. 4.
    Naylor, G.R. & Podolsky, R.J. Proc. Natl. Acad. Sci. USA 78, 5559–5563 (1981).PubMedCrossRefGoogle Scholar
  5. 5.
    Tanaka, H., Hashizume, H. & Sugi, H. in Contractile Mechanism in Muscle (eds Pollack, G.H. & Sugi, H.) 203–205 (Plenum Press, New York, 1984).CrossRefGoogle Scholar
  6. 6.
    dos Remedios, C.G., Millikan, R.G.C. & Morales, M.F. J. Gen. Physiol. 59, 103–120 (1972).PubMedCrossRefGoogle Scholar
  7. 7.
    Cooke, R. Nature 294, 570–571 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    Crowder, M.S. & Cooke, R. Biophys. J.t 51, 323–333 (1987).CrossRefGoogle Scholar
  9. 9.
    Yanagida, T. in Contractile Mechanism in Muscle (eds Pollack, G.H. & Sugi, H.) 391–412 (Plenum Press, New York, 1984).Google Scholar
  10. 10.
    Hambly, B. Franks K. & Cooke, R. Biophys. J. 59, 127–138 (1991).PubMedCrossRefGoogle Scholar
  11. 11.
    Suzuki, S., Oshimi, Y. & Sugi, H. This volume, 57-70.Google Scholar
  12. 12.
    Marston, S.B. Biochem. J. 203, 453–460 (1982).PubMedGoogle Scholar
  13. 13.
    Stein, L.A., Schwarz, R.P., Chock, P.B. & Eisenberg, E. Biochemistry 18, 3895–3909 (1979).PubMedCrossRefGoogle Scholar
  14. 14.
    Greene, L.E. & Eisenberg, E. Proc. Natl. Acad. Sci. USA 77, 2616–2620 (1980).PubMedCrossRefGoogle Scholar
  15. 15.
    Duong, A.M. & Reisler, E. Biochemistry 28, 3502–3509 (1989).PubMedCrossRefGoogle Scholar
  16. 16.
    Coates, J.H., Criddle, A.H. & Geeves, M.A. Biochem. J. 232, 351–356 (1985).PubMedGoogle Scholar
  17. 17.
    Mornet, D., Bertrand, R., Pantel, P. Andemard, E. & Kassab, R. Nature 292, 301–306 (1981).PubMedCrossRefGoogle Scholar
  18. 18.
    Ford. L.E., Huxley, A.F. & Simmons, R.M. J. Physiol. (Lond.) 269, 441–515 (1977).Google Scholar
  19. 19.
    Horiuti, K., Higuchi, H., Umazume, Y., Konishi, M., Okazaki, O. & Kurihara, S. J. Muscle Res. Cell Motility 9, 156–164 (1988).CrossRefGoogle Scholar
  20. 20.
    Lenart, T.D., Tanner, J.W. & Goldman, Y.E. Biophys. J. 55, 260a (1989).Google Scholar
  21. 21.
    Tawada, K. & Kimura, M. J. Muscle Res. Cell Motility 7, 339–350 (1986).CrossRefGoogle Scholar
  22. 22.
    Schoenberg, M. & Eisenberg E. Biophys. J. 48, 863–871 (1985).PubMedCrossRefGoogle Scholar
  23. 23.
    Trybus, K.M. & Taylor, E.W. Proc. Natl. Acad. Sci. USA 77, 7209–7213 (1980).PubMedCrossRefGoogle Scholar
  24. 24.
    Geeves, M.A., Goody, R.S. & Gutfreund, H. J. Muscle Res. Cell Motility 5, 351–361 (1984).CrossRefGoogle Scholar
  25. 25.
    Geeves, M.A. Biochem. J. 274, 1–14 (1991).PubMedGoogle Scholar
  26. 26.
    Tawada, K. & Emoto Y. in Molecular Mechanism of Muscle Contraction (eds Sugi, H. & Pollack, G.H.) 219–226 (Plenum Press, New York, 1988).Google Scholar
  27. 27.
    Cooke, R. & Franks, K.E. Biochem. J. 19, 2265–2269 (1980).CrossRefGoogle Scholar
  28. 28.
    Lovell, S. J. & Harrington, W.F. J. Mol. Biol. 149, 659–674 (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    Brenner, B., Schoenberg, M., Chalovich, J.M., Greene, L.E. & Eisenberg, E. Proc. Natl. Acad. Sci. USA 79, 7288–7291 (1982).PubMedCrossRefGoogle Scholar
  30. 30.
    King, R.T. & Greene, L.E. J. Biol. Chem. 262, 6128–6134 (1987).PubMedGoogle Scholar
  31. 31.
    Sutoh, K. Biochemistry 21, 3654–3661 (1982).PubMedCrossRefGoogle Scholar
  32. 32.
    DasGupta, G. & Reisler, E. J. Mol. Biol. 207, 833–836 (1989).PubMedCrossRefGoogle Scholar
  33. 33.
    Adams, S., DasGupta, G., Chalovich, J.M. & Reisler, E. J. Biol. Chem. 265, 2231–2237 (1990).Google Scholar
  34. 34.
    Brenner, B., Yu, L.C. & Chalovich, J.M. Proc. Natl. Acad. Sci. USA 88, 5739–5743 (1991).PubMedCrossRefGoogle Scholar
  35. 35.
    Labbé, J.-P., Méjean, C., Benyamin, Y. & Roustan, C. Biochem. J. 227, 407–413 (1990).Google Scholar
  36. 36.
    Svensson, E.C. & Thomas, D.D. Biophys. J. 50, 999–1002 (1986).PubMedCrossRefGoogle Scholar
  37. 37.
    Fajer, P.G., Fajer, E.A., Schoenberg, M. & Thomas, D.D. Biophys. J. 60, 642–649 (1991).PubMedCrossRefGoogle Scholar
  38. 38.
    Craig, R., Greene, L.E. & Eisenberg, E. Proc. Natl. Acad. Sci. USA 82, 3247–3251 (1985).PubMedCrossRefGoogle Scholar
  39. 39.
    Applegate, D. & Flicker, P. J. Biol. Chem. 262, 6856–6863 (1987).PubMedGoogle Scholar
  40. 40.
    Matsuda, T. & Podolsky, R.J. Proc. Natl. Acad. Sci. USA 81, 2364–2368 (1984).PubMedCrossRefGoogle Scholar
  41. 41.
    Collett, B. & Podolsky, R.J. personal communication.Google Scholar
  42. 42.
    Highsmith, S., Kretzschmar, KM., O’Konski, C.T. & Morales, M. Proc. Natl. Acad. Sci. USA 74, 4986–4990 (1977).PubMedCrossRefGoogle Scholar
  43. 43.
    Anderson, M., & Schoenberg, M. Biophys. J. 52, 1077–1082 (1987).PubMedCrossRefGoogle Scholar
  44. 44.
    Eisenberg, E. & Hill, T.L. Science 227, 999–1006 (1985).PubMedCrossRefGoogle Scholar
  45. 45.
    Podolsky, R.J. & Arata, T. in Molecular Mechanism of Muscle Contraction (eds Sugi, H. & Pollack, G.H.) 319–330 (Plenum Press, New York, 1988).Google Scholar
  46. 46.
    Brenner, B. & Yu, L.C. This volume, 461-469.Google Scholar
  47. 47.
    Huxley, H.E. & Kress, M. J. Muscle Res. Cell Motility 6, 153–161 (1985).CrossRefGoogle Scholar
  48. 48.
    Cooke, R., Crowder, M.S. & Thomas, D.D. Nature 300, 776–778 (1982).PubMedCrossRefGoogle Scholar
  49. 49.
    Duong, A.M. & Reisler, E. Biochemistry 28, 1307–1313 (1989).PubMedCrossRefGoogle Scholar
  50. 50.
    Hatta, I., Sugi, H. & Tamura, Y. J. Physiol. (Lond.) 403, 193–209 (1988).Google Scholar
  51. 51.
    Huxley, H.E., Faruqi, A.R., Kress, M., Bordas, J. & Koch, M.H.J. J. Mol. Biol. 158, 637–684 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • H. Iwamoto
    • 1
    • 2
  • R. J. Podolsky
    • 1
  1. 1.National Institute of Arthritis and Musculoskeletal and Skin Diseases National Institutes of HealthBethesdaUSA
  2. 2.Department of Physiology, School of MedicineTeikyo UniversityItabashi-ku, TokyoJapan

Personalised recommendations