Advertisement

Kinetic Properties of the ATP-Dependent Actin-Myosin Sliding as Revealed by the Force-Movement Assay System with a Centrifuge Microscope

  • S. Chaen
  • K. Oiwa
  • T. Kobayashi
  • T. Gross
  • E. Kamitsubo
  • T. Shimmen
  • H. Sugi
Chapter
  • 108 Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 332)

Abstract

To study the kinetic properties of the ATP-dependent actin-myosin sliding responsible for muscle contraction, we developed an in vitro force-movement assay system, in which centrifugal forces were applied to myosin-coated polystyrene beads sliding along actin cables of giant algal cells in the presence of ATP. Under constant centrifugal forces directed opposite to the bead movement (“positive” loads), the beads moved with constant velocities. The steady-state force-velocity (P-V) curve thus obtained was double-hyperbolic in shape, being analogous to the P-V curve of single muscle fibers. Under constant centrifugal forces in the direction of the bead movement (“negative” loads), on the other hand, the beads also moved with constant velocities. Unexpectedly, the velocity of bead movement did not increase with increasing negative loads, but decreased markedly (by 20–60%). We also studied the effect of centrifugal forces at right angles with actin cables on the bead movement.

Keywords

Actin Filament Lateral Force Positive Load Negative Load Myosin Head 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kron, S.J. & Spudich, J.A. Proc. Natl. Acad. Sci. USA 83, 6272–6276 (1986).PubMedCrossRefGoogle Scholar
  2. 2.
    Kishino, A. & Yanagida, T. Nature 334, 74–76 (1988).PubMedCrossRefGoogle Scholar
  3. 3.
    Sugi, H., Kobayashi, T., Gross, T., Noguchi, K., Karr, T. & Harrington, W.F. Proc. Natl. Acad. Sci. USA 89, 6134–6137 (1992).PubMedCrossRefGoogle Scholar
  4. 4.
    Hill, A.V. Proc. R. Soc. London Ser. B 126, 136–195 (1938).CrossRefGoogle Scholar
  5. 5.
    Kamitsubo, E., Ohashi, Y. & Kikuyama, M. Protoplasma 152, 148–155 (1989).CrossRefGoogle Scholar
  6. 6.
    Oiwa, K., Chaen, S., Kamitsubo, E., Shimmen, T. & Sugi, H. Proc. Natl. Acad. Sci. USA 87, 7893–7897 (1990).PubMedCrossRefGoogle Scholar
  7. 7.
    Sheetz, M.P. & Spudich, J.A. Nature 303, 31–35 (1983).PubMedCrossRefGoogle Scholar
  8. 8.
    Edman, K.A.P. J. Physiol. (London) 404, 301–321 (1988).Google Scholar
  9. 9.
    Huxley, A.F. Prog. Biophys. Byophys. Chem. 7, 257–318 (1957).Google Scholar
  10. 10.
    Mitsui, T. & Oshima, H. J. Muscle Res. Cell Motility 9, 248–260 (1988).CrossRefGoogle Scholar
  11. 11.
    Edman, K.A.P. J. Physiol. (London) 291, 143–159 (1979).Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • S. Chaen
    • 1
  • K. Oiwa
    • 1
  • T. Kobayashi
    • 1
  • T. Gross
    • 1
  • E. Kamitsubo
    • 2
  • T. Shimmen
    • 3
  • H. Sugi
    • 1
  1. 1.Department of PhysiologySchool of Medicine Teikyo UniversityTokyoJapan
  2. 2.Biological Laboratory Hitotsubashi UniversityTokyoJapan
  3. 3.Department of Life Science Faculty of ScienceHimeji Institute of TechnologyHimejiJapan

Personalised recommendations