Advertisement

Coupling Between Atpase and Force-Generating Attachment-Detachment Cycles of Actomyosin In Vitro

  • Toshio Yanagida
  • Akihiko Ishijima
  • Kiwamu Saito
  • Yoshie Harada
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 332)

Abstract

We have developed a high resolution force measurement system in vitro by manipulating a single actin filament attached to a microneedle. The system could resolve forces less than a piconewton, and has time resolution in the submillisecond range. We have used this system to detect force fluctuations produced by individual molecular interactions. We observed large force fluctuations during isometric force generations. Noise analysis of the force fluctuations showed that the force was produced by stochastic and independent attachment-detachment cycles between actin and myosin heads, and one force-generating attachment-detachment cycle corresponded to each ATPase cycle. But, the force fluctuations almost completely disappeared during sliding at the velocities of 20 to 70% of the maximum one at zero load. The analysis indicated that myosin heads produced an almost constant force for most (probably > 70%) of the ATPase cycle time, i. e., the duty ratio > 0.7. Since the myosin step size was given as (velocity) × (the duty ratio) × (the ATPase cycle time, 30 ms), it was calculated to be 40 to 110 nm, corresponding to velocities of 20 to 70 % of the maximum one (9μm/s), respectively. These values are much greater than the displacement by a single attachment-detachment cycle of actomyosin (10–20 nm), indicating that multiple force-generating attachment-detachment cycles correspond to each ATPase cycle during sliding at velocities of > 20 % of the maximum one. In conclusion, the coupling between the ATPase and the force-generating attachment-detachment cycles of actomyosin is not rigidly determined in a one-to-one fashion but is variable depending on the load.

Keywords

Actin Filament Power Density Spectrum Myosin Head Duty Ratio Thick Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Huxley, A.F. & Niedergerke, R. Nature 173, 971–973 (1954).PubMedCrossRefGoogle Scholar
  2. 2.
    Huxley, H.E. & Hanson, J. Nature 173, 973–976 (1954).PubMedCrossRefGoogle Scholar
  3. 3.
    Huxley, A.F. Prog. Biophys. Biophys. Chem. 7, 255–318 (1957)PubMedGoogle Scholar
  4. 4.
    Huxley, H.E. Science 164, 1356–1366 (1969)PubMedCrossRefGoogle Scholar
  5. 5.
    Huxley, A.F. & Simmons, R.M. Nature 233, 533–538 (1971).PubMedCrossRefGoogle Scholar
  6. 6.
    Yanagida, T., Arata, T. & Oosawa, F. Nature 316, 366–369 (1985).PubMedCrossRefGoogle Scholar
  7. 7.
    Yanagida, T., Nakase, M., Nishiyama, K. & Oosawa, F. Nature 307, 58–60 (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    Kron, S.J. & Spudich, J.A. Proc. Natl. Acad. Sci. USA 83, 6272–6276 (1986).PubMedCrossRefGoogle Scholar
  9. 9.
    Harada, Y., Sakurada, K., Aoki, T. Thomas, D.D. & Yanagida, T. J. Mol. Biol. 216, 49–68 (1990).PubMedCrossRefGoogle Scholar
  10. 10.
    Uyeda, T.Q.P., Kron, S.J. & Spudich J.A. J. Mol. Biol. 214, 699–710 (1990).PubMedCrossRefGoogle Scholar
  11. 11.
    Yano-Toyoshima, Y., Kron, S.J. & Spudich, J.A. Proc. Natl. Acad. Sci. USA 87, 7130–7134 (1990)CrossRefGoogle Scholar
  12. 12.
    Kishino, A. & Yanagida, T. Nature 334, 74–76 (1988).PubMedCrossRefGoogle Scholar
  13. 13.
    Borejdo, J. & Morales, M.F. Biophys. J. 20, 315–334 (1977).PubMedCrossRefGoogle Scholar
  14. 14.
    Iwazumi, T. Am. J. Physiol. 252, 253–262 (1987).Google Scholar
  15. 15.
    Kamimura, S. & Kamiya, R. Nature 340, 476–478 (1989).PubMedCrossRefGoogle Scholar
  16. 16.
    Ohno, T. & Kodama, T. J. Physiol. (Lond.) in the press.Google Scholar
  17. 17.
    Lee, Y.W. Statistical Theory of Communication Chap. 8 (John Wiley & Sons, Inc. USA) (1969).Google Scholar
  18. 18.
    Stevens, C.F. Biophys. J. 12, 1028–1047 (1972).PubMedCrossRefGoogle Scholar
  19. 19.
    Ishijima, A., Doi, T. Sakurada, K. & Yanagida, T. Nature, 352, 301–306 (1991)PubMedCrossRefGoogle Scholar
  20. 20.
    Katz, B. & Miledi, R. Nature New Biol. 232, 124–126 (1971).PubMedCrossRefGoogle Scholar
  21. 21.
    Bagshaw, C.R. Muscle Contraction (Chapmann and Hall, London, 1982).CrossRefGoogle Scholar
  22. 22.
    Huxley, H.E. J. Biol. Chem. 265, 8347–8350 (1990).PubMedGoogle Scholar
  23. 23.
    Spudich, J.A. Nature 348, 284–285 (1990).PubMedCrossRefGoogle Scholar
  24. 24.
    Taylor, E.W. CRC Critical Rev. Biochem. 6, 103–164 (1979).CrossRefGoogle Scholar
  25. 25.
    Eisenberg, E. & Greene, L.E. Ann. Rev. Physiol. 42, 293–309 (1980).CrossRefGoogle Scholar
  26. 26.
    Tonomura, Y. Energy-transduing ATPases — Structure and Kinetics (Cambridge Univ. Press) (1986).Google Scholar
  27. 27.
    Hibberd, M.G. & Trentham, D.R. Ann Rev. Biophys. Biophys Chem. 15, 119–161 (1986).CrossRefGoogle Scholar
  28. 28.
    Cooke, R. CRC Critical Rev. Biochem. 21, 53–118 (1986).CrossRefGoogle Scholar
  29. 29.
    Sellers, J.R. & Kachar B. Science 249, 406–408 (1990).PubMedCrossRefGoogle Scholar
  30. 30.
    Yamada, A., Ishii, N & Takahashi, K. J. Biochem. 108, 341–343 (1990).PubMedGoogle Scholar
  31. 31.
    Ishijima, A. & Yanagida, T. Proc. of the 29th Biophys. Soc. Japan S195 (1991).Google Scholar
  32. 32.
    Uyeda, T.Q.P., Warrick, H.M., Kron, S.J. & Spudich, J.A. Nature 352, 307–311 (1991).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Toshio Yanagida
    • 1
  • Akihiko Ishijima
    • 2
  • Kiwamu Saito
    • 1
  • Yoshie Harada
    • 1
  1. 1.Department of Biophysical EngineeringToyonaka,OsakaJapan
  2. 2.Honda R&DWako, SaitamaJapan

Personalised recommendations