Advertisement

Factors Affecting Filament Velocity in In Vitro Motility Assays and their Relation to Unloaded Shortening Velocity in Muscle Fibers

  • Earl Homsher
  • Fei Wang
  • James Sellers
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 332)

Abstract

The measurement of fluorescently labeled actin filament movement driven by mechanoenzymes (e.g. myosin) is an important methodology for the study of molecular motors. It is assumed that the filament velocity, Vf, is analogous to the unloaded shortening velocity, Vu, seen in muscle fibers. To evaluate this assumption we compared Vf to literature values for Vu with regard to the effects of [ATP], [ADP], [Pi], pH, ionic strength (10–150 mM) and temperature (15–30°C). Vf and Vu are quantitatively similar with respect to the effects of substrate and product concentrations and temperatures > 20°C. However, Vf is more sensitive to decreases in pH and temperatures < 20°C than is Vu. At ionic strengths of 50–150 mM, Vf and Vu exhibit similar ionic strength dependencies (decreasing with ionic strength). At ionic strengths < 50 mM, Vf is markedly reduced. Thus while Vf is a good analogue for Vu under certain conditions (elevated ionic strength and temperatures > 20°C), under others it is not. The results of motility assays must be cautiously interpreted.

Keywords

Ionic Strength Thin Filament Motility Assay Filament Velocity Rabbit Psoas 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Homsher, E. & Millar, N. Ann. Rev. Physiol. 52, 875–896 (1990).CrossRefGoogle Scholar
  2. 2.
    Brenner, B., M. Schoenberg, M., Chalovich, J.M., Greene, L.E. & Eisenberg, E. Proc. Natl. Acad. Sci. USA 79, 7288–7291 (1982).PubMedCrossRefGoogle Scholar
  3. 3.
    Hibberd, M., Dantzig, J.A., Trentham, D.R. & Goldman, Y.E. Science 228, 1317–1319 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    Pate, E. & Cooke, R. J. Muscle Res. Cell Motility 10, 181–196 (1989).CrossRefGoogle Scholar
  5. 5.
    Siemankowski, R. F, Wiseman, M.O. & White, H.D. Proc. Natl. Acad. Sci. USA 82, 658–662 (1985).PubMedCrossRefGoogle Scholar
  6. 6.
    Cooke, R. & Pate, E. Biophys. J. 48, 789–798 (1985).PubMedCrossRefGoogle Scholar
  7. 7.
    Harada, Y., Noguchi, A., Kishino, A. & Yanagida, T. Nature 326, 805–808 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    Kron, SJ. & Spudich, J.A. Proc. Natl. Acad. Sci. USA 83, 6272–6276 (1986).PubMedCrossRefGoogle Scholar
  9. 9.
    Sheetz, M. P. & Spudich, J.A. Nature 303, 31–35 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    Homsher, E., Wang, F. & Sellers, J. Am. J. Physiol. (Cell) in pressGoogle Scholar
  11. 11.
    Fabiato, A. & Fabiato, F. J. Physiol. (Paris) 75, 463–505 (1979).Google Scholar
  12. 12.
    Ferenczi, M.A., Goldman, Y.E. & Simmons, R.M. J. Physiol. (Lond.) 350, 519–543 (1984).Google Scholar
  13. 13.
    Sheetz, N.P., Chasan, R. & Spudich, J.A. J. Cell Biol. 99, 1867–1871 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    Umemoto, S. & Sellers, J.R. J. Biol. Chem. 265, 14864–14869 (1990).PubMedGoogle Scholar
  15. 15.
    Warshaw, D.M., Desrosiers, J.M., Work, S.S. & Trybus, K.M. J. Cell Biol. 111, 453–463 (1990).PubMedCrossRefGoogle Scholar
  16. 16.
    Eisenberg, E. & Keilley, W. J. Biol. Chem. 249, 4742–4748 (1974)PubMedGoogle Scholar
  17. 17.
    Pate, E., Nakamaya, K., Franks-Skiba, K., Yount, R.G. & Cooke, R. Biophys. J. 59, 598–605 (1991).PubMedCrossRefGoogle Scholar
  18. 18.
    Cooke, R., Franks, K., Luciani, G. & Pate, E. J. Physiol. (Lond.) 395, 77–97 (1988).Google Scholar
  19. 19.
    Gulati, J. & Podolsky, R.J. J. Gen. Physiol. 78, 233–257 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    Takiguchi, K., Hayashi, H., Kurimoto, E. & Higashi-Fujime, S. J. Biochem. 107, 671–679 (1990).PubMedGoogle Scholar
  21. 21.
    Vale, R.D. & Oosawa, F. Adv. Biophys. 26, 97–134 (1990).PubMedCrossRefGoogle Scholar
  22. 22.
    Uyeda, T.Q.P., Krön, SJ. & Spudich, J.A. J. Mol. Biol. 214, 699–710 (1990).PubMedCrossRefGoogle Scholar
  23. 23.
    Tesi, C., Kitagishi, K., Travers, F. & Barman, T. Biochemistry 30, 4061–4067 (1991).PubMedCrossRefGoogle Scholar
  24. 24.
    Ranatunga, K.W. J. Physiol. (Lond.) 329, 465–483 (1982).Google Scholar
  25. 25.
    Stein, R.B., Gordon, T. & Shriver, J. Biophys. J. 40, 97–107 (1982).PubMedCrossRefGoogle Scholar
  26. 26.
    Sweeney, H.L., Kushmerick, M.J., Mabuchi, K., Sreter, F. & Gergely, J. J. Biol. Chem. 263, 9034–9039 (1988).PubMedGoogle Scholar
  27. 27.
    Toyoshima, Y.Y., Kron, SJ. & Spudich, J.A. Proc. Natl Acad. Sci. USA 87, 7130–7134 (1990).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Earl Homsher
    • 2
  • Fei Wang
    • 1
  • James Sellers
    • 1
  1. 1.Section of Cellular and Molecular MotilityLaboratory of Molecular CardiologyBethesdaUSA
  2. 2.Department of PhysiologySchool of Medicine, UCLALos AngelesUSA

Personalised recommendations