Advertisement

The Region in Myosin S-1 that may be Involved in Energy Transduction

  • Manuel F. Morales
  • Kathleen Ue
  • Donald B. Bivin
Chapter
  • 106 Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 332)

Abstract

Newly-reported structural information about certain proximities between points on bound nucleotide and points on the heavy chain of myosin S-1 are incorporated into a previously-reported [Botts, J. Thomason, J.F. & Morales, M.F. Proc. Nat. Acad. Sci. USA,86, 2204-2208 (1989)] structure of S-l. The resulting, enhanced structure is then used to identify some functionalities (e.g., the ATP-perturbable tryptophans), and to explain certain observations (e.g., some concerning the role of bound Mg2+ in the spectral response of TNBS-labelled Lys-83, and some concerning the response of the S-1 CD signal to nucleotide binding and to temperature change). These considerations lead to the suggestion that a strand of the 50 kDa “domain” (residues 510 to 540), and a strand of the 20 kDa ‘domain” (residues 697–719) are involved in transmitting the effects of nucleotide binding and hydrolysis to the loop (constituted from the same “domains”) that reaches a major (S-l)-actin interface.

Keywords

Fluorescence Resonance Energy Transfer Nucleotide Binding Energy Transduction Circular Dichroism Signal Phosphate Oxygen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reedy, M.K., Holmes, K. & Tregear, R.T. Nature 207, 1276–1280 (1965).PubMedCrossRefGoogle Scholar
  2. 2.
    Huxley, H.E. Science 164, 1356–1366 (1969).PubMedCrossRefGoogle Scholar
  3. 3.
    Huxley, A.F. & Simmons, R.M. Nature 233, 533–538 (1971).PubMedCrossRefGoogle Scholar
  4. 4.
    Trentham, D.R., Eccleston, J.F. & Bagshaw, C.R. Quart. Rev. Biophys. 9, 217–281 (1976).CrossRefGoogle Scholar
  5. 5.
    Lymn, R.W. & Taylor, E.W. Biochemistry 10, 4617–4624 (1971).PubMedCrossRefGoogle Scholar
  6. 6.
    Botts, J., Cooke, R., Dos Remedios, CG., Duke, J.A., Mendelson, R.A., Morales, M.F., Tokiwa, T., Viniegra, G. & Yount, R.G. Cold Spring Harbor Symp. Quant. Biol. 37, 195–200 (1973)CrossRefGoogle Scholar
  7. 7.
    Morales, M.F. & Botts, J. Proc. Natl. Acad. Sci. USA 76, 3857–3859 (1979).PubMedCrossRefGoogle Scholar
  8. 8.
    Morales, M.F. in Perspectives on Biological Energy Transduction (ed. Mukohata, Y.) 3–12 (Academic Press, Tokyo, 1987).Google Scholar
  9. 9.
    Botts, J., Takashi, R., Torgerson, P.M., Hozumi, T., Muhlrad, A., Mornet, D. & Morales, M.F. Proc. Natl. Acad. Sci. USA 81, 2060–2064 (1984).PubMedCrossRefGoogle Scholar
  10. 10.
    Botts, J., Thomason, J.F. & Morales, M.F. Proc. Nad. Acad. Sci. USA 86, 2204–2208 (1989).CrossRefGoogle Scholar
  11. 11.
    Mornet, D., Ue, K. & Morales, M.F. Proc. Natl. Acad. Sci. USA 82, 1658–1662 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    Johnson, W.C., Bivin, D.B., Ue, K. & Morales, M.F. Proc. Natl. Acad. Sci. USA 88, 9748–9750 (1991).PubMedCrossRefGoogle Scholar
  13. 13.
    Burke, M., Rajasekharan, K.N., Maruta, S. & Ikebe, M. FEBS Lett. 262, 185–188 (1990).PubMedCrossRefGoogle Scholar
  14. 14.
    Walker, J.E., Saraste, M., Runswick, M.J. & Gay, M.J. EMBO J. 1, 945–951 (1982).PubMedGoogle Scholar
  15. 15.
    Grammer, J. & Yount, R.G. Biophys. J. 59, 226a (1991).Google Scholar
  16. 16.
    Mahmood, R., Elzinga, M. & Yount, R.G. Biochemistry 28, 3989–3995 (1989).PubMedCrossRefGoogle Scholar
  17. 17.
    Agarwal, R., Rajasekharan, K.N. & Burke, M. Biochemistry 266, 2272–2275 (1991).Google Scholar
  18. 18.
    Morita, F. J. Biol. Chem. 242, 4501–4506 (1967).PubMedGoogle Scholar
  19. 19.
    Werber, M., Szent-Györgyi, A.G. & Fasman, G.D. Biochemistry 21, 1284–1294 (1972).Google Scholar
  20. 20.
    Torgerson, P.M. Biochemistry 23, 3002–3007 (1984).PubMedCrossRefGoogle Scholar
  21. 21.
    Muhlrad, A., Kasprzak, A.A., Ue, K., Ajtai, K. & Burghardt, T.P. Biochim. Biophys. Acta 869, 128–140 (1986).PubMedCrossRefGoogle Scholar
  22. 22.
    Muhlrad, A. Biochim. Biophys. Acta 493, 154–166 (1977).PubMedCrossRefGoogle Scholar
  23. 23.
    Kubo, A., Tokura, S. & Tonomura, Y. J. Biol. Chem. 235, 2835–2839 (1960).PubMedGoogle Scholar
  24. 24.
    Miyanishi, T., Horiuti, K., Endo, M., & Matsuda, G. Eur. J. Biochem. 171, 31–35 (1988).PubMedCrossRefGoogle Scholar
  25. 25.
    Burke, M., Reisler, E. & Harrington, W.F. Biochemistry 15, 1923–1927.Google Scholar
  26. 26.
    Dalbey, R.E., Weiel, J. & Yount, R.G. Biochemistry 22, 4696–4706 (1983).PubMedCrossRefGoogle Scholar
  27. 27.
    Cheung, H.C., Gryczynski, I., Malak, H., Wiczk, W. & Lakowicz, J.R. Biophys. Chem. 40, 1–17 (1991).PubMedCrossRefGoogle Scholar
  28. 28.
    Highsmith, S., Akasaka, K., Konrad, M., Goody, R., Holmes, K., Jardetzky, N. & Jardetzky, O. Biochemistry 18, 4238–4244 (1979)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Manuel F. Morales
    • 1
  • Kathleen Ue
    • 1
  • Donald B. Bivin
    • 1
  1. 1.Dept. of Physiology and BiophysicsUniversity of the PacificSan FranciscoUSA

Personalised recommendations