Cross-Bridges Affect Both TnC Structure and Calcium Affinity in Muscle Fibers

  • A. M. Gordon
  • E. B. Ridgway
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 332)


In vertebrate striated muscle, calcium binding to troponin initiates contraction, a strong interaction of actin and myosin. In isolated proteins and skinned fibers, the strong interaction of myosin with actin also affects troponin. Fluorescent labels attached to troponin C show structural changes in the TnC environment with crossbridge attachment and also with calcium binding. Evidence that this effect of crossbridges also occurs in intact striated muscle comes from studies in partially activated cardiac or skeletal muscle by others and in barnacle muscle by us. Length changes which detach myosin cross-bridges produce a brief burst of extra calcium that can be detected by aequorin in activated, voltage clamped single barnacle muscle fibers. That this calcium is coming from calcium bound to the activating site (troponin-C) is supported by several pieces of evidence. Studies on the dependence of the extra calcium on force and the time of the length change are consistent with the amplitude of the extra calcium being proportional to the bound calcium (CaTnC) and with increased cross-bridge attachment and force increasing calcium binding to troponin-C by up to a factor of 10. Importantly, stretch of active muscle (which first detaches cross-bridges and then enhances steady force) gives a biphasic response: first extra calcium (presumably due to cross-bridge detachment) and then, decreased calcium (presumably due to enhanced calcium binding to TnC). The enhanced calcium binding we see with elevated force (via strained cross-bridges) implies that calcium binding to TnC is enhanced not only be cross-bridge attachment but also by cross-bridge (or thin filament) strain.


Calcium Binding Length Change Free Calcium Thin Filament Sarcomere Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ebashi, S. & Endo, M. Prog. Biophys. Mol. Biol. 18, 123–183 (1968).PubMedCrossRefGoogle Scholar
  2. 2.
    Bremel, R.D. & Weber, A. Nature 238, 97–101 (1972).Google Scholar
  3. 3.
    Gordon, A.M. in Muscular Contraction (ed. Simmons, R.M.) 163–179 (Cambridge University Press, 1992).Google Scholar
  4. 4.
    Gordon, A.M. & Yates, L.D. in Molecular and Cellular Aspects of Muscle Contraction and Cell Motility (éd. Sugi, H.) 1–36 (Springer-Verlag, 1992).Google Scholar
  5. 5.
    Weber, A. & Murray, J.M. Physiol. Rev. 53, 612–673 (1973).PubMedGoogle Scholar
  6. 6.
    Eisenberg, E. & Hill, T.L. Science 227, 999–1006 (1985).PubMedCrossRefGoogle Scholar
  7. 7.
    El-Saleh, S.C., Warber, K.D. & Potter, J.D. J. Muscle Res. Cell Motility 7, 387–404 (1986).CrossRefGoogle Scholar
  8. 8.
    Gordon, A.M., Ridgway, E.B., Yates, L.D. & Allen, T. Adv. Exp. Med. Biol. 226, 89–98 (1988).PubMedGoogle Scholar
  9. 9.
    Güth, K. & Potter, J.D. J. Biol. Chem. 262, 13627–13635 (1987).PubMedGoogle Scholar
  10. 10.
    Morano, I. & Rüegg, J.C. Pflügers Arch. 418, 333–337 (1991).PubMedCrossRefGoogle Scholar
  11. 11.
    Reuben, J.P., Brandt, P.W., Berman, M. & Grundfest, H. J. Gen. Physiol. 57, 385–407 (1971).PubMedCrossRefGoogle Scholar
  12. 12.
    Goldman, Y.E., Hibberd, M.G. & Trentham, D.R. J. Physiol. (Lond.) 354, 605–624 (1984).Google Scholar
  13. 13.
    Fuchs, F. Biochim. Biophys. Acta 491, 523–531 (1977).PubMedCrossRefGoogle Scholar
  14. 14.
    Hoftnann, P.A. & Fuchs, F. Am. J. Physiol. 253, C541–C546 (1987).Google Scholar
  15. 15.
    Fuchs, F. J. Muscle Res. Cell Motility 6, 477–486 (1985).CrossRefGoogle Scholar
  16. 16.
    Kress, M., Huxley, H.E., Faruqi, A.R. & Hendrix, J. J. Mol. Biol. 188, 325–342 (1986).PubMedCrossRefGoogle Scholar
  17. 17.
    Gordon, A.M. & Ridgway, E.B. Eur. J. Cardiol. 7, 27–34 (1978).PubMedGoogle Scholar
  18. 18.
    Ridgway, E.B. & Gordon, A.M. J. Gen. Physiol. 83, 75–103 (1984).PubMedCrossRefGoogle Scholar
  19. 19.
    Allen, D.G. & Kurihara, S. J. Physiol. (Lond.) 327, 79–94 (1982).Google Scholar
  20. 20.
    Stephenson, D.G. & Wendt, I.R. J. Muscle Res. Cell Motility 5, 243–272 (1984).CrossRefGoogle Scholar
  21. 21.
    Allen, D.G. & Kentish, J.C. J. Physiol. (Lond.) 407, 489–503 (1988).Google Scholar
  22. 22.
    Endo, M. Nature New Biol. 237, 211–213 (1972).PubMedCrossRefGoogle Scholar
  23. 23.
    Gordon, A.M. & Ridgway, E.B. J. Gen. Physiol. 90, 321–340 (1987).PubMedCrossRefGoogle Scholar
  24. 24.
    Kurihara, S., Saeki, Y., Hongo, K., Tanaka, E. & Sudo, N. Jpn. J. Physiol. 40, 915–920 (1990).PubMedCrossRefGoogle Scholar
  25. 25.
    Collins, J.H., Theibert, J.L., Francois, J.-M., Ashley, C.C. & Potter, J.D. Biochem. 30, 702–707 (1991).CrossRefGoogle Scholar
  26. 26.
    Ashley, C.C, Kerrick, W.G., Lea, T.J., Khalil, R. & Potter, J.D. Biophys. J. 51, 327a (1987).Google Scholar
  27. 27.
    Qian, Y., Gordon, A.M. & Luo, Z.X. Biophys. J. 59, 584a (1991).Google Scholar
  28. 28.
    Dubyak, G.R. J. Muscle Res. Cell Motility 6, 275–292 (1985).CrossRefGoogle Scholar
  29. 29.
    Griffiths, P.J., Duchateau, J.J., Maéda, Y., Potter, J.D. & Ashley, C.C. Pflügers Arch. 415, 554–565 (1990).PubMedCrossRefGoogle Scholar
  30. 30.
    Sugi, H. & Tsuchiya, T. J. Physiol. (Lond.) 407, 215–229 (1988).Google Scholar
  31. 31.
    Gordon, A.M. & Ridgway, E.B. J. Gen. Physiol. 96, 1013–1035 (1990).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • A. M. Gordon
    • 1
    • 2
  • E. B. Ridgway
    • 1
    • 2
  1. 1.Departments of Physiology and BiophysicsUniversity of WashingtonSeattleUSA
  2. 2.Medical College of VirginiaRichmondUSA

Personalised recommendations