Role of Parvalbumin in Relaxation of Frog Skeletal Muscle

  • Tien-tzu Hou
  • J. David Johnson
  • Jack A. Rail
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 332)


Experiments were done to test the hypothesis that parvalbumin (PA) promotes relaxation in frog skeletal muscle. Single fibers and purified PA from R. temporaria skeletal muscle were used to determine the relationship between Ca2+ and Mg2+ dissociation rates from PA and changes in relaxation rate as a function of isometric tetanus duration at 0°C. Relaxation rate slows as a function of tetanus duration with a rate constant of 1.18 s-1. Recovery of relaxation rate after a prolonged tetanus exhibits a rate constant of 0.12 s-1. Dissociation rate constants for Mg2+ and Ca2+ from purified PA are 0.93 S-1 and 0.19 S-1, respectively. Thus rates of slowing and recovery of relaxation rate may be controlled by Mg2+ and Ca2+ dissociation from PA, respectively. The influence of temperature on relaxation rate and on Ca2+ and Mg2+ dissociation rates from purified PA also was examined. The magnitude of slowing of relaxation rate with increasing tetanus duration, relative to the final, steady value of relaxation rate, is greater at 0 than at 10°C. In the 0 to 10°C range, the Q10 for relaxation rate increases with increasing tetanus duration. Both of these observations can be explained if the Q10 for Ca2+ uptake by the sarcoplasmic reticulum is greater than the Q10 for Ca2+ sequestration by PA during relaxation. When Ca2+ and Mg2+ dissociation rates from PA at various temperatures are compared to other proposed indicators of PA function, it is concluded that PA facilitates relaxation of frog skeletal muscle in the 0 to 20°C range.


Sarcoplasmic Reticulum Relaxation Rate Muscle Relaxation Dissociation Rate Sarcomere Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Briggs, N. Fed. Proc. 34, 540 (1975).Google Scholar
  2. 2.
    Gerday, C. & Gillis, J.M. J. Physiol. (Lond.) 258, 96–97P (1976).Google Scholar
  3. 3.
    Pechere, J.-F., Derancourt, J. & Haiech, J. FEBS Lett. 75, 111–114 (1977).PubMedCrossRefGoogle Scholar
  4. 4.
    Heizmann, C.W. Experientia 40, 910–921 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    Gosselin-Rey, C. & Gerday, C. Biochim. Biophys. Acta 492, 53–63 (1977).PubMedCrossRefGoogle Scholar
  6. 6.
    Hou, T.-T., Johnson, J.D. & Rail, J.A. J. Physiol. (Lond.) 441, 285–304 (1991).Google Scholar
  7. 7.
    Yates, L.D. & Greaser, M.L. J. Biol. Chem. 258, 5770–5774 (1983).PubMedGoogle Scholar
  8. 8.
    Potter, J.D., Johnson, J.D., Dedman, J.R., Schreiber, W.E., Mandel, F., Jackson, R.L. & Means, A.R. In Calcium-binding Proteins and Calcium function (Wasserman, R.H., Corradino, R.A., Carafoli, E., Kretsinger, R.H., Maclennan, D.H. & Siegel, F.L.) 239–250 (North-Holland, New York, 197Google Scholar
  9. 9.
    Haiech, J., Derancourt, J., Pechere, J-F. & Démaille, J.G. Biochem. 18, 2752–2758 (1979).CrossRefGoogle Scholar
  10. 10.
    Robertson, S.P., Johnson, J.D. & Potter, J.D. Biophys. J. 34, 559–569 (1981).PubMedCrossRefGoogle Scholar
  11. 11.
    Gillis, J.M., Thomason, D., Lefevre, J. & Kretsinger, R.H. J. Muscle Res. Cell Motility 3, 377–398 (1982).CrossRefGoogle Scholar
  12. 12.
    Baylor, S.M., Chandler, W.K. & Marshall, M.W. J. Physiol. (Lond.) 344, 625–666 (1983).Google Scholar
  13. 13.
    Cannell, M.B. & Allen, D.G. Biophys. J. 45, 913–925 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    Heizmann, C.W., Berchtold, M.W. & Rowlerson, A.M. Proc. Nat. Acad. Sci. 79, 7243–7247 (1982).PubMedCrossRefGoogle Scholar
  15. 15.
    Gillis, J.M., Piront, A. & Gosselin-Rey, C. Biochim. Biophys. Acta 585, 444–450 (1979).PubMedCrossRefGoogle Scholar
  16. 16.
    Somlyo, A.V., Gonzalez-Serratos, H., Shuman, H., McClellan, G. & Somlyo, A.P. J. Cell Biol. 90, 577–594 (1981).PubMedCrossRefGoogle Scholar
  17. 17.
    Abbott, B.C. J. Physiol. (Lond.) 112, 438–445 (1951).Google Scholar
  18. 18.
    Curtin, N.A. J. Muscle Res. Cell Motility 7, 269–275 (1986).CrossRefGoogle Scholar
  19. 19.
    Peckham, M. & Woledge, R.C. J. Physiol. (Lond.) 374, 123–135 (1986).Google Scholar
  20. 20.
    Cannell, M.B. J. Physiol. (Lond.) 376, 203–218 (1986).Google Scholar
  21. 21.
    Blinks, J.R., Rudel, R. & Taylor, S.R. J. Physiol. (Lond.) 277, 291–323 (1978).Google Scholar
  22. 22.
    Irving, M., Maylie, J., Sizto, N.L. & Chandler, W.K. J. Gen. Physiol. 93, 585–608 (1989).PubMedCrossRefGoogle Scholar
  23. 23.
    Ogawa, Y. & Tanokura, M. J. Biochem. 99, 81–89 (1986).PubMedGoogle Scholar
  24. 24.
    Somlyo, A.V., McCleUan, G., Gonzalez-Serratos, H. & Somlyo, A.P. J Biol. Chem. 260 6801–6807 (1985).Google Scholar
  25. 25.
    Hou, T.-T., Johnson, J.D. & Rail, J.A. J. Physiol. (Lond.) 449, 399–410 (1992).Google Scholar
  26. 26.
    Edman, K.A.P. & Flitney, F.W. J. Physiol. (Lond.) 329, 1–20 (1982).Google Scholar
  27. 27.
    Dockter, M.E. In Calcium and Cell Function, vol. 4 (Cheung, W.Y.) 175–208 (Academic Press, New York, 1983).Google Scholar
  28. 28.
    Johnson, J.D., Robinson, D.E, Robertson, S.P. Schwartz, A. & Potter, J.D. In The Regulation of Muscle Contraction (Grinnell, A.D. & Brazier, M.B.) 241–257 (Academic Press, New York, 1981).Google Scholar
  29. 29.
    Cannell, M.B. J. Physiol. (Lond.) 329, 44–45P (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Tien-tzu Hou
    • 1
  • J. David Johnson
    • 2
  • Jack A. Rail
    • 1
  1. 1.Departments of PhysiologyOhio State UniversityColumbusUSA
  2. 2.Departments of Medical BiochemistryOhio State UniversityColumbusUSA

Personalised recommendations