Skip to main content

13C Tracer Methodology in Microbial Ecology with Special Reference to Primary Production Processes in Aquatic Environments

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 13))

Abstract

Photosynthetic production by phytoplankton supplies organic material and energy to the aquatic food web consisting of bacteria, zooplankton, fish, water bird, whale, etc., and it may well be the most important step in the biological processes in aquatic environments. The estimation of primary productivity, thus, is essential to elucidating the dynamics of the microbial community and organic material. The importance of biological processes for the transfer of CO2 across the sea surface has recently been much discussed in relation to global changes (e.g., Berger et al., 1989; Longhurst, 1991). The dynamics of primary productivity, in particular, has a significant role in the global carbon cycle. Although there have been new approaches to assessing the dynamics, such as satellite imaging and time series sediment trapping, the direct measurement of the carbon uptake rate by phytoplankton photosynthesis can be regarded as the most reliable and basic estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barlow, R. G., 1982, Phytoplankton ecology in the Southern Benguela current. II. Carbon assimilation patterns, J. Exp. Mar. Biol. Ecol. 63:229–237.

    CAS  Google Scholar 

  • Barrie, A., and Workman, C. T., 1984, An automated analytical system for nutritional investigations using 15N tracers, Spectros. Int. J. 3:439–447.

    CAS  Google Scholar 

  • Barsdate, R. J., and Dugdale, R. C., 1965, Rapid conversion of organic nitrogen to N2 for mass spectrometry: An automated Dumas procedure, Anal. Biochem. 13:1–5.

    CAS  Google Scholar 

  • Berger, W. H., Smetacek, V. S., and Wefer, G., 1989, Ocean productivity and paleoproductivity-An overview, in: Productivity of the Ocean: Present and Past (W. H. Berger, V. S. Smetacek, and G. Wefer, eds.), Wiley, New York, pp. 1–34.

    Google Scholar 

  • Berman, T., and Gerber, C., 1980, Differential filtration studies of carbon flux from living algae to microheterotrophs, microplankton size distribution and respiration in Lake Kinneret, Microb. Ecol. 6:189–198.

    Google Scholar 

  • Collos, Y., and Slawyk, G., 1979, 13C and 15N uptake by marine phytoplankton. I. Influence of nitrogen source and concentration in laboratory cultures of diatoms, J. Phycol. 15:186–190.

    CAS  Google Scholar 

  • Collos, Y., and Slawyk, G., 1985, On the compatibility of carbon uptake rates calculated from stable and radioactive isotope data: Implications for the design of experimental protocols in aquatic primary productivity, J. Plankton Res. 7:595–603.

    CAS  Google Scholar 

  • Collos, Y., and Slawyk, G., 1986, 13C and 15N uptake by marine phytoplankton-IV. Uptake ratios and the contribution of nitrate to the productivity of Antarctic waters (Indian Ocean sector), Deep-Sea Res. 33:1039–1051.

    CAS  Google Scholar 

  • Cook, J. R., 1963, Adaptations in growth and division in Euglena effected by energy supply, J. Protozool. 10:436–444.

    CAS  Google Scholar 

  • Cuhel, R. C., and Lean, P. R. S., 1987, Influence of light intensity, light quality, temperature, and daylength on uptake and assimilation of carbon dioxide and sulfate by lake plankton, Can. J. Fish. Aquat. Sci. 44:2118–2132.

    CAS  Google Scholar 

  • Derenbach, J. B., and Williams, P. L., 1974, Autotrophic and bacterial production: Fractionation of plankton populations by differential filtration of samples from the English Channel, Mar. Biol. 25:263–269.

    Google Scholar 

  • Dugdale, R. C., and Goering, J. J., 1967, Uptake of new and regenerated forms of nitrogen in primary productivity, Limnol. Oceanogr. 12:196–206.

    CAS  Google Scholar 

  • Dugdale, R. C., and Wilkerson, F. P., 1986, The use of 15N to measure nitrogen uptake in eutrophic oceans; experimental considerations, Limnol. Oceanogr. 31:673–689.

    CAS  Google Scholar 

  • Eppley, R. W., and Renger, E. H., 1988, Nanomolar increase in surface layer nitrate concentration following a small wind event, Deep-Sea Res. 35:1119–1125.

    CAS  Google Scholar 

  • Eppley, R. W., and Sharp, J. H., 1975, Photosynthetic measurements in the central North Pacific: The dark loss of carbon in 24 h incubation, Limnol. Oceanogr. 20:981–987.

    CAS  Google Scholar 

  • Falkowski, P. G., 1991, Species variability in the fractionation of 13C and 12C by marine phytoplankton, J. Plankton Res. 13(Suppl.):21–28.

    Google Scholar 

  • Fisher, T. R., Jr., Haines, E. B., and Volk, R. J., 1979, A comment on the calculation of atom percent enrichment for stable isotopes, Limnol. Oceanogr. 24:593–595.

    CAS  Google Scholar 

  • Fitzwater, S. E., Knauer, G. A., and Martin, J. H., 1982, Metal contamination and its effect on primary production measurements, Limnol. Oceanogr. 27:544–551.

    CAS  Google Scholar 

  • Fry, B., and Sherr, E. B., 1988, δ13C measurement as indicators of carbon flow in marine and freshwater ecosystems, in: Stable Isotopes in Ecological Research (P. W. Rundel, J. R. Ehleringer, and K. A. Nagy, eds.), Springer-Verlag, Berlin, pp. 196–229.

    Google Scholar 

  • Gieskes, W. W. C., Kraay, G. W., and Baars, M. A., 1979, Current 14C methods for measuring primary production: Gross underestimates in oceanic waters, Neth. J. Sea Res. 13:58–78.

    CAS  Google Scholar 

  • Goldman, J. C, 1988, Spatial and temporal discontinuities of biological processes in pelagic surface waters, in: Toward a Theory on Biological-Physical Interactions in the World Ocean (B. J. Rothschild, ed.), Kluwer, Dordrecht, pp. 273–296.

    Google Scholar 

  • Gomes, H. D. R., Goes, J. I., and Parulekar, A. H., 1992, Size-fractionated biomass, photosynthesis and dark CO2 fixation in a tropical oceanic environment, J. Plankton Res. 14:1307–1329.

    Google Scholar 

  • Gordon, A. E., and Frigerio, A., 1972, Mass fragmentography as an application of gas-liquid chromatography-mass spectrometry in biological research, J. Chromatogr. 73:401–417.

    PubMed  CAS  Google Scholar 

  • Hama, J., and Handa, N., 1986, Analysis of the production processes of natural phytoplankton population using 13C-gas chromatography-mass spectrometry methods, Res. Org. Geochem. 5:41–46 (in Japanese).

    Google Scholar 

  • Hama, J., and Handa, N., 1992a, Diel photosynthetic production of cellular organic matter in natural phytoplankton populations, measured with 13C and gas chromatography/mass spectrometry. I. Monosaccharides, Mar. Biol. 112:175–181.

    CAS  Google Scholar 

  • Hama, J., and Handa, N., 1992b, Diel photosynthetic production of cellular organic matter in natural phytoplankton populations, measured with 13C and gas chromatography/mass spectrometry. II. Fatty acids and amino acids, Mar. Biol. 112:183–190.

    CAS  Google Scholar 

  • Hama, J., and Handa, N., 1992c, Diel variation of water-extractable carbohydrate composition of natural phytoplankton populations in Kinu-ura Bay, J. Exp. Mar. Biol. Ecol. 162:159–176.

    CAS  Google Scholar 

  • Hama, J., and Handa, N., 1992d, The phytoplankton bloom in the Kinu-ura Bay, Japan in the rainy season, Proc. Conf. Pacific Ocean Environ. Probing 2:692–697.

    Google Scholar 

  • Hama, T., 1988, 13C-GC-MS analysis of photosynthetic products of the phytoplankton population in the regional upwelling area around the Izu Islands, Japan, Deep-Sea Res. 35:91–110.

    CAS  Google Scholar 

  • Hama, T., 1991, Production and turnover rates of fatty acids in marine particulate matter through phytoplankton photosynthesis, Mar. Chem. 33:213–227.

    CAS  Google Scholar 

  • Hama, T., 1992, Primary productivity and photosynthetic products around the Kuroshio warm-core ring, Deep-Sea Res. 39(Suppl. 1): S279-S293.

    Google Scholar 

  • Hama, T., and Handa, N., 1987, Pattern of organic matter production by natural phytoplankton population in a eutrophic lake. 1. Intracellular products, Arch. Hydrobiol. 109:107–120.

    CAS  Google Scholar 

  • Hama, T., and Honjyo, T., 1987, Photosynthetic products and nutrient availability in phytoplankton population from Gokasyo Bay, Japan, J. Exp. Mar. Biol. Ecol. 112:251–266.

    CAS  Google Scholar 

  • Hama, T., Miyazaki, T., Ogawa, Y., Iwakuma, T., Takahashi, M., Otsuki, A., and Ichimura, S., 1983, Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope, Mar. Biol. 73:31–36.

    CAS  Google Scholar 

  • Hama, T., Handa, N., and Hama, J., 1987, Determination of amino acid production rate of a marine phytoplankton population with 13C and gas chromatography-mass spectrometry, Limnol. Ocean ogr. 32:1144–1153.

    CAS  Google Scholar 

  • Hama, T., Matsunaga, K., Handa, N., and Takahashi, M., 1988a, Day-night changes in production of carbohydrate and protein by natural phytoplankton population from Lake Biwa, Japan, J. Plankton Res. 10:941–955.

    CAS  Google Scholar 

  • Hama, T., Handa, N., Takahashi, M., Whitney, F., and Wong, C. S., 1988b, Change in distribution patterns of photosynthetically incorporated C during phytoplankton bloom in controlled experimental ecosystem, J. Exp. Mar. Biol. Ecol. 120:39–56.

    CAS  Google Scholar 

  • Hama, T., Matsunaga, K., Handa, N., and Takahashi, M., 1990, Composition of photosynthetic products in Lake Biwa, Japan; vertical and seasonal changes and their relation to environmental factors, J. Plankton Res. 12:133–147.

    CAS  Google Scholar 

  • Hama, T., Matsunaga, K., Handa, N., and Takahashi, M., 1992, Fatty acid composition in photo-synthetic products of natural phytoplankton population in Lake Biwa, Japan, J. Plankton Res. 14:1055–1065.

    CAS  Google Scholar 

  • Hitchcock, G. L., 1978, Labelling patterns of carbon-14 in net plankton during a winter-spring bloom, J. Exp. Mar. Biol. Ecol. 31:141–153.

    CAS  Google Scholar 

  • Hitchcock, G. L., 1983, Photosynthate partitioning in cultured marine phytoplankton. I. Dinoflagel-lates, J. Exp. Mar. Biol. Ecol. 69:21–36.

    Google Scholar 

  • Holton, R. W., Blecker, H. H., and Onore, M., 1964, Effect of growth temperature on the fatty acid composition of a blue-green alga, Phytochemistry 3:595–602.

    CAS  Google Scholar 

  • Joint, P. A., and Morris, R. J., 1982, The role of bacteria in the turnover of organic matter in the sea, Oceanogr. Mar. Biol. Annu. Rev. 20:65–118.

    CAS  Google Scholar 

  • Kanda, J., Saino, T., and Hattori, A., 1985a, Nitrogen uptake by natural populations of phytoplankton and primary production in the Pacific Ocean: Regional variability of uptake capacity, Limnol. Oceanogr. 30:987–999.

    CAS  Google Scholar 

  • Kanda, J., Saino, T., and Hattori, A., 1985b, Variation of carbon and nitrogen uptake capacity in a regional upwelling area around Hachijo Island, J. Oceanogr. Soc. Japan. 41:373–380.

    CAS  Google Scholar 

  • Knopka, A., and Schnur, M., 1980, Effect of light intensity on macromolecular synthesis in cyanobacteria, Microb. Ecol. 6:291–301.

    Google Scholar 

  • Kokubun, N., and Sasaki, Y., 1979, Use of stable isotope-Determination of 13CO2 by infrared absorption spectrometry and its application to the diagnosis by breath test, Kagaku To Seibutsu 17:384–389 (in Japanese).

    CAS  Google Scholar 

  • Kouchi, H., 1982, Direct analysis of 13C abundance in plant carbohydrates by gas chromatographymass spectrometry, J. Chromatogr. 241:305–323.

    CAS  Google Scholar 

  • Lean, D. R. S., Murphy, T. P., and Pick, F. R., 1982, Photosynthetic response of lake plankton to combined nitrogen enrichment, J. Phycol. 18:509–521.

    CAS  Google Scholar 

  • Leftley, J. W., Bonin, D. J., and Maestrini, S. Y., 1983, Problems in estimating marine phytoplankton growth, productivity and metabolic activity in nature: An overview of methodology, Oceanogr. Mar. Biol. Annu. Rev. 21:23–66.

    CAS  Google Scholar 

  • Li, W. K. W., and Platt, T., 1982, Distribution of carbon among photosynthetic end-products in phytoplankton of the eastern Canadian Arctic, J. Phycol. 18:466–471.

    Google Scholar 

  • Longhurst, A. R., 1991, Role of the marine biosphere in the global carbon cycle, Limnol. Oceanogr. 36:1507–1526.

    CAS  Google Scholar 

  • McConville, M. J., Mitchell, C., and Wetherbee, R., 1985, Patterns of carbon assimilation in a microalgal community from annual sea ice, East Antarctica, Polar Biol. 4:135–141.

    CAS  Google Scholar 

  • Marra, J., Bidigare, R. R., and Dickey, T. D., 1990, Nutrients and mixing, chlorophyll and phytoplankton growth, Deep-Sea Res. 37:127–143.

    CAS  Google Scholar 

  • Miyazaki, T., and Ichimura, S., 1986, Uptake of inorganic carbon and nitrogen by phytoplankton during the winter mixing period in a freshwater lake, Lake Nakanuma, Japan, Arch. Hydrobiol. 105:409–421.

    CAS  Google Scholar 

  • Miyazaki, T., Honjo, Y., and Ichimura, S., 1985a, Applicability of the stable isotope method using 13C and 15N simultaneously to the estimation of carbon and nitrogen assimilation in a eutrophic, freshwater lake, Lake Nakanuma, Japan, Arch. Hydrobiol. 102:355–365.

    CAS  Google Scholar 

  • Miyazaki, T., Honjo, Y., and Ichimura, S., 1985b, Uptake of carbon and inorganic nitrogen in a eutrophic lake, Lake Nakanuma, Japan, from spring through summer, Arch. Hydrobiol. 102:473–485.

    CAS  Google Scholar 

  • Miyazaki, T., Suyama, H., and Uotani, H., 1987, Diel changes of uptake of inorganic carbon and nitrogen by phytoplankton, and the relationship between inorganic carbon and nitrogen uptake in Lake Nakanuma, Japan, J. Plankton Res. 9:513–524.

    CAS  Google Scholar 

  • Morris, I., 1981, Phyotosynthetic products, physiological state, and phytoplankton growth, Can. Bull. Fish. Aquat. Sci.210:83–102.

    Google Scholar 

  • Morris, I., and Skea, W., 1978, Products of photosynthesis in natural populations of marine phytoplankton from the Gulf of Maine, Mar. Biol. 47:303–312.

    CAS  Google Scholar 

  • Myklestad, S., 1974, Production of carbohydrates by marine planktonic diatoms. I. Comparison of nine different species in culture, J. Exp. Mar. Biol. Ecol. 15:261–274.

    CAS  Google Scholar 

  • Myklestad, S., 1977, Production of carbohydrates by marine planktonic diatoms. II. Influence of the N/P ratio in the growth medium on the assimilation ratio, growth rate, and production of cellular and extracellular carbohydrates by Chaetoceros affinis var. willei (Gran) Hustedt and Skele-tonema costatum(Grev.) Cleve, J. Exp. Mar. Biol. Ecol. 29:161–179.

    CAS  Google Scholar 

  • Myklestad, S., and Haug, A., 1972, Production of carbohydrates by the marine diatom Chaetoceros affinis var. willei (Gran) Hustedt. I. Effect of the concentration of nutrients in the culture medium, J. Exp. Mar. Biol. Ecol. 9:125–136.

    CAS  Google Scholar 

  • Nalewajko, C., Lee, K., and Fay, P., 1980, Significance of algal extracellular products to bacteria in lakes and in cultures, Microb. Ecol.6:199–207.

    CAS  Google Scholar 

  • Olive, J. H., and Morrison, J. H., 1967, Variations in distribution of 14C in cell extracts of phytoplankton living under natural conditions, Limnol. Oceanogr.12:383–391.

    CAS  Google Scholar 

  • Omura, S., 1976, The antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty acid synthesis, Bacteriol. Rev.40:681–697.

    PubMed  CAS  Google Scholar 

  • Otsuki, A., Ito, Y., and Fujii, T., 1983, Simultaneous measurements and determinations of stable carbon and nitrogen isotope ratios, and organic carbon and nitrogen contents in biological samples by coupling of a small quadrupole mass spectrometer and modified carbon-nitrogen elemental analyzer, Int. J. Mass Spectrom. Ion Phys.48:343–346.

    CAS  Google Scholar 

  • Otsuki, A., Aizaki, M., Iwakuma, T., Takamura, N., Hanazato, T., Kawai, T., and Yasuno, M., 1985, Coupled transformation of inorganic stable carbon-13 and nitrogen-15 isotopes into higher trophic levels in a eutrophic shallow lake, Limnol. Oceanogr.30:820–825.

    CAS  Google Scholar 

  • Otsuki, A., Seki, H., McAllister, C.D., and Levings, C.D., 1987, Measurement of net growth rates of herbivorous benthic animals using periphyton labeled simultaneously with 13C and 15N, Limnol. Oceanogr.32:499–503.

    CAS  Google Scholar 

  • Owens, N. J. P., 1988, Rapid and total automation of shipboard 15N analysis: Examples from the North Sea, J. Exp. Mar. Biol. Ecol.122:163–171.

    CAS  Google Scholar 

  • Parrish, C. C., 1987, Time series of particulate and dissolved lipid classes during spring phytoplankton blooms in Bedford Basin, a marine inlet, Mar. Ecol. Prog. Ser.35:129–139.

    CAS  Google Scholar 

  • Parsons, T. R., Takahashi, M., and Hargrave, B., 1984, Biological Oceanographic Processes ,3rd ed., Pergamon Press, Elmsford, N.Y.

    Google Scholar 

  • Perry, G. J., Volkman, J. K., Johns, R. B., and Bovor, H. J., Jr., 1979, Fatty acids of bacterial origin in contemporary marine sediments, Geochim. Cosmochim. Acta 43:1715–1725.

    CAS  Google Scholar 

  • Peterson, B. J., 1980, Aquatic primary productivity and the 14C-CO2 method: A history of the productivity problem, Annu. Rev. Ecol. Syst.11:359–385.

    Google Scholar 

  • Prakash, A., Sheldon, R. W., and Sutcliffe, W. H., Jr., 1991, Geographic variation of oceanic 14C dark uptake, Limnol. Oceanogr.36:30–39.

    Google Scholar 

  • Preston, T., and Owens, N. J. P., 1983, Interfacing an automatic elemental analyser with an isotope ratio mass spectrometer: The potential for fully automated total nitrogen and nitrogen-15 analysis, Analyst 108:971–977.

    CAS  Google Scholar 

  • Preston, T., and Owens, N. J. P., 1985, Preliminary 13C measurements using a gas chromatograph interfaced to an isotope ratio mass spectrometer, Biomed. Mass Spectrom.12:510–513.

    CAS  Google Scholar 

  • Priscu, J. C., and Priscu, L. R., 1984, Photosynthate partitioning by phytoplankton in a New Zealand coastal upwelling system, Mar. Biol.81:31–40.

    CAS  Google Scholar 

  • Rau, G., 1978, Carbon-13 depletion in a subalpine lake: Carbon flow implications, Science 201:901–902.

    PubMed  CAS  Google Scholar 

  • Rau, G. H., Sweeney, R. E., and Kaplan, I. R., 1982, Plankton 13C:12C ratio changes with latitude: Difference between northern and southern oceans, Deep-Sea Res.29:1035–1039.

    CAS  Google Scholar 

  • Sakamoto, M., 1989, Inorganic carbon and ammonium uptake by phytoplankton in nitrogen depleted waters in Lake Suwa, Jpn. J. Limnol.50:45–51.

    Google Scholar 

  • Sakamoto, M., Tilzer, M. M., Gächter, R., Rai, H., Collos, Y., Tschumi, P., Berner, P., Zbaren, D., Zbaren, J., Dokulil, M., Bossard, P., Uehlinger, U., and Nusch, E. A., 1984, Joint field experiments for comparisons of measuring methods of photosynthetic production, J. Plankton Res.6:365–383.

    CAS  Google Scholar 

  • Sato, N., Murata, N., Miura, Y., and Ueta, N., 1979, Effect of growth temperature on lipid and fatty acid compositions in the blue-green algae Anabaena variabilis and Anacystis nidulans, Biochim. Biophys. Acta 572:19–28.

    PubMed  CAS  Google Scholar 

  • Sato, N., Seyama, Y., and Murata, N., 1986, Lipid-linked desaturation of palmitic acid in mono-galactosyl diacylglycerol in the blue-green alga (Cyanobacterium) Anabaena variabilis studied in vivo, Plant Cell Physiol.27:819–835.

    CAS  Google Scholar 

  • Satoh, H., and Watanabe, K., 1988, Primary productivity in the fast ice area near Syowa Station, Antarctica, during spring and summer, 1983/84, J. Oceanogr. Soc. Japan.44:287–292.

    Google Scholar 

  • Satoh, H., Yamaguchi, Y., Kokubun, N., and Aruga, Y., 1985, Application of infrared absorption spectrometry for measuring the photosynthetic production of phytoplankton by the stable 13C isotope method, La mer 23:171–176.

    CAS  Google Scholar 

  • Satoh, H., Yamaguchi, Y., Watanabe, K., and Aruga, Y., 1989a, Light conditions and photosynthetic productivity of ice algal assemblages in Lake Saroma, Hokkaido, Jpn. J. Phycol.37:274–278.

    Google Scholar 

  • Satoh, H., Yamaguchi, Y., Watanabe, K., Tanimura, A., Fukuchi, M., and Aruga, Y., 1989b, Photosynthetic nature of ice algae and their contribution to the primary production in lagoon Saroma ko, Hokkaido, Japan, Proc. NIPR Symp. Polar Biol.2:1–8.

    Google Scholar 

  • Satoh, H., Watanabe, K., and Hoshiai, T., 1991, Estimates of primary production by ice algae and phytoplankton in the coastal ice-covered area near Syowa Station, Antarctica, Antarct. Rec. 35:30–38.

    Google Scholar 

  • Satoh, H., Tanaka, H., and Koike, T., 1992, Light condition and photosynthetic characteristic of the subsurface chlorophyll maximum at a station in Solomon Sea, Jpn. J. Phycol.40:135–142.

    CAS  Google Scholar 

  • Shiomoto, A., and Matsumura, S., 1992, Primary productivity in a cold water mass and the neighborhood area occurring off Enshu-Nada in the late summer of 1989, J. Oceanogr.48:105–115.

    CAS  Google Scholar 

  • Slawyk, G., 1979,13C and 15N uptake by phytoplankton in the Antarctic upwelling area: Results from the Antiprod I cruise in the Indian Ocean sector, Aust. J. Mar. Freshwater Res.30:431–448.

    CAS  Google Scholar 

  • Slawyk, G., Collos, Y., and Auclair, J. C., 1977, The use of the 13C and 15N isotopes for the simultaneous measurement of carbon and nitrogen turnover rates in marine phytoplankton, Limnol. Oceanogr.22:925–932.

    CAS  Google Scholar 

  • Slawyk, G., Collos, Y., and Auclair, J. C., 1979, Reply to comment by Fisher et al., Limnol. Oceanogr.24:595–597.

    CAS  Google Scholar 

  • Slawyk, G., Minas, M., Collos, Y., Legendre, L., and Roy, S., 1984, Comparison of radioactive and stable isotope tracer techniques for measuring photosynthesis: 13C and 14C uptake by marine phytoplankton, J. Plankton Res.6:249–257.

    CAS  Google Scholar 

  • Slawyk, G., L’Helguen, S., Collos, Y., and Freije, H., 1988, Quantitative determination of particulate organic N and C in marine-phytoplankton samples using mass-spectrometer signals from isotope-ratio analyses in 15N-and 13C-tracer studies, J. Exp. Mar. Biol. Ecol.115:187–195.

    CAS  Google Scholar 

  • Smith, A. E., and Morris, I., 1980a, Synthesis of lipid during photosynthesis of phytoplankton of the Southern Ocean, Science 207:197–199.

    PubMed  CAS  Google Scholar 

  • Smith, A. E., and Morris, I., 1980b, Pathways of carbon assimilation in phytoplankton from the Antarctic Ocean, Limnol. Oceanogr.25:865–872.

    CAS  Google Scholar 

  • Steemann Nielsen, E., 1952, The use of radioactive carbon (C14) for measuring organic production in the sea, J. Cons. Int. Explor. Mer.18:117–140.

    Google Scholar 

  • Summons, R. E., Pereira, W. E., Reynolds, W. E., Rindfleisch, T. C., and Duffield, A. M., 1974, Analysis of twelve amino acids in biological fluids by mass fragmentography, Anal. Chem.46:582–587.

    PubMed  CAS  Google Scholar 

  • Taguchi, S., and Laws, E. A., 1988, On the microparticles which pass through glass fiber filter type GF/F in coastal and open waters, J. Plankton Res.10:999–1008.

    CAS  Google Scholar 

  • Takahashi, K., Wada, E., and Sakamoto, M., 1990, Carbon isotope discrimination by phytoplankton and photosynthetic bacteria in monomictic lake Fukami-ike, Arch. Hydrobiol.120:197–210.

    Google Scholar 

  • Takahashi, K., Wada, E., and Sakamoto, M., 1991, Relationship between carbon isotope discrimination and the specific growth rate of green alga Chlamydomonas reinhardtii, Jpn. J. Limnol.52:105–112.

    CAS  Google Scholar 

  • Takamura, N., and Aizaki, M., 1991, Change in primary production in Lake Kasumigaura (1986–1989) accompanied by transition of dominant species, Jpn J. Limnol.52:173–187.

    Google Scholar 

  • Takamura, N., and Yasuno, M., 1988, Sedimentation of phytoplankton populations dominated by Microcystis in a shallow lake, J. Plankton Res.10:283–299.

    Google Scholar 

  • Takamura, N., Iwakuma, T., and Yasuno, M., 1985, Photosynthesis and primary production of Microcystis aeruginosa Kütz. in Lake Kasumigaura, J. Plankton Res.7:303–312.

    CAS  Google Scholar 

  • Takamura, N., Iwakuma, T., and Yasuno, M., 1986, Photosynthesis of size-fractionated phytoplankton population in hypertrophic Lake Kasumigaura, Japan, Arch. Hydrobiol.108:235–257.

    Google Scholar 

  • Takamura, N., Iwakuma, T., and Yasuno, M., 1987a, Uptake of 13C and 15N (ammonium, nitrate and urea) by Microcystis in Lake Kasumigaura, J. Plankton Res.9:151–165.

    Google Scholar 

  • Takamura, N., Iwakuma, T., and Yasuno, M., 1987b, Primary production in Lake Kasumigaura, 1981–1985, Jpn. J. Limnol.48:S13–S38.

    Google Scholar 

  • Turpin, D. H., 1983, Ammonium induced photosynthetic suppression in ammonium limited Dunaliella tertiolecta (Chlorophyta), J. Phycol.19:70–76.

    CAS  Google Scholar 

  • Van den Heuvel, W. J. A., Smith, J. L., and Cohen, J. S., 1970, Gas liquid chromatography and mass spectrometry of carbon-13 enriched and deuterated amino acids as trimethylsilyl derivatives, J. Chromatogr. Sci.8:567–576.

    Google Scholar 

  • Venrick, E. L., Beers, J. R., and Heinbokel, J. F., 1977, Possible consequences of containing microplankton for physiological rate measurements, J. Exp. Mar. Biol. Ecol.26:55–76.

    CAS  Google Scholar 

  • Wada, E., Terazaki, M., Kabaya, Y., and Nemoto, T., 1987, 15N and 13C abundances in the Antarctic Ocean with emphasis on the biogeochemical structure of the food web, Deep-Sea Res.34:829–841.

    CAS  Google Scholar 

  • Wakeham, S. G., and Canuel, E. A., 1988, Organic geochemistry of particulate matter in the eastern tropical North Pacific Ocean: Implications for particulate dynamics, J. Mar. Res.46:183–213.

    CAS  Google Scholar 

  • Wallen, D. G., and Geen, G. H., 1971, The nature of the photosynthate in natural phytoplankton populations in relation to light quality, Mar. Biol.10:157–168.

    CAS  Google Scholar 

  • Wolter, K., 1982, Bacterial incorporation of organic substances released by natural phytoplankton populations, Mar. Ecol. Prog. Ser.7:287–295.

    Google Scholar 

  • Yanagisawa, K., and Kumazawa, K., 1982, Determination of 13C concentration by infrared absorption method using approximation formula, J. Sci. Soil Manure Japan.53:347–349 (in Japanese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hama, T., Hama, J., Handa, N. (1993). 13C Tracer Methodology in Microbial Ecology with Special Reference to Primary Production Processes in Aquatic Environments. In: Jones, J.G. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2858-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2858-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6238-8

  • Online ISBN: 978-1-4615-2858-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics