Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 247))

  • 114 Accesses

Abstract

It is more difficult to measure blood flow to the skeleton than to any other organ or tissue in the body because of the complex arterial supply and venous drainage of each bone and the heterogeneity of cortical and trabecular bone and bone marrow. Most techniques are invasive and some are lethal, so that they cannot be applied to human studies. On the other hand, animal experiments can give an insight into the metabolism and growth of bone and such topics as fracture healing. The methods to be considered here are (1) indicator fractionation, using radioactive microspheres, (2) the clearance of bone-seeking tracers, (3) the washout of diffusible tracers and (4) laser Doppler measurements. The methods are the same in principle as those used for other organs or tissues, but the skeleton does pose particular problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cochrane, E., I.D. McCarthy: Rapid effects of parathyroid hormone (1–34) and prostaglandin E2 on bone blood flow and strontium clearance in the rat in vivo. J. Endocrinol. 131: 359–365 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Davies, R., P. Tothill, G. Hooper, R.H. Fleming, I.D. McCarthy, S.P.F. Hughes: The early effects of sympathectomy on bone blood flow. Calcif. Tissue Int. 36: 622–625 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Hellem, S., S. Jacobsson, G.F. Nilsson, D.H. Lewis: Measurement of microvascular blood flow in cancellous bone using Doppler flowmetry and 133Xe-clearance. Int. J. Oral Surg. 12: 165–177 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Kelly, P.J., T. Lipintsoi, J.B. Bassingthwaighte: Blood flow in canine tibial diaphysis estimated by iodoantipyrine 125I washout. J. Appl.Physiol. 31: 38–47 (1971).

    PubMed  CAS  Google Scholar 

  • Nilsson, G.E., T. Tenland, P.A. Oeberg: Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans. Biomed. Eng. 27: 597–604 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Notzli, P., M.F. Swiontkowski, S.T. Thaxter, G.K Carpenter III, R. Wyatt: Laser Doppler flowmetry for bone blood flow measurements: helium-neon laser light attenuation and depth of perfusion assessment. J. Orthop. Res. 7: 413–424 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Schoutens, A., P. Bergmann, M. Verhas. Bone blood flow measured by 85Sr microspheres and bone seeker clearances in the rat. Am. J. Physiol. 236: H1–H6 (1979).

    PubMed  CAS  Google Scholar 

  • Swiontkowski, M.F., S. Tepic, S.M. Perren, R. Moor, R. Ganz, B.A. Rahn. Laser Doppler flowmetry for bone blood flow measurement: correlation with microsphere estimates and evaluation of the effect of intracapsular pressure on femoral head blood flow. J. Orthop. Res. 4: 362–371 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, H., T. Yamamuro, H. Okumura, R. Kasai, K. Tada. Bone blood flow after spinal paralysis in the rat. J. Orthop. Res. 8: 393–400 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Tothill, P. Methods of assessing blood flow in bone. Seminars in Orthopaedics 1: 138–146 (1986).

    Google Scholar 

  • Tothill, P., G. Hooper, I.D. McCarthy, S.P.F. Hughes. The variation with flow rate of the extraction of bone-seeking tracers in recirculation experiments. Calcif.Tissue Int. 37: 312–317 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Tothill, P., G. Hooper, I.D. McCarthy, S.P.F. Hughes. The pattern of distribution of blood flow in dog limb bones measured using microspheres. Clin. Phys. Physiol. Meas. 8: 239–247 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Tothill, P., J.N. McPherson. The distribution of blood flow to the whole skeleton in dogs, rabbits and rats measured with microspheres. Clin. Phys. Physiol. Meas. 7: 117–123 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Wannfors, K., B. Gazelius. Blood flow in jaw bones affected by chronic osteomyelitis. Br. J. Oral Maxillofac. Surg. 29: 147–153 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Whiteside, L.A., P.A. Lesker, D.J. Simmons. The measurement of regional bone and bone marrow blood flow in the rabbit using the hydrogen washout technique. Clin. Orthop. 122: 340–346 (1977).

    PubMed  Google Scholar 

  • Whiteside, L.A., K. Ogata, P. Lesker. The acute effects of periosteal stripping and medullary reaming on regional bone blood flow. Clin. Orthop. 131: 266–272 (1978).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Plenum Press, New York

About this chapter

Cite this chapter

Tothill, P. (1993). Measurement of Bone Blood Flow in Animals. In: Schoutens, A., Arlet, J., Gardeniers, J.W.M., Hughes, S.P.F. (eds) Bone Circulation and Vascularization in Normal and Pathological Conditions. NATO ASI Series, vol 247. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2838-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2838-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-44523-1

  • Online ISBN: 978-1-4615-2838-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics