Phylogenetic Origin of the Plastids

  • Klaus Valentin
  • Rose Ann Cattolico
  • Klaus Zetsche

Abstract

The endosymbiotic hypothesis of plastid evolution is now generally accepted (Margulis 1981; Whatley and Whatley 1981; Giovannoni et al.1988; Gray 1989). This hypothesis implies that about 1000 million years ago a eukaryotic cell took up a prokaryotic cyanobacterium-like organism which was subsequently reduced to a plastid. This “primary endosymbiosis” resulted in a “primary plastid” surrounded by two membranes, the inner potentially derived from the symbiont’s outer limiting membrane, the outer derived from the eukaryote’s plasma membrane (probably from an ancestral food vacuole). During the establishment of the endosymbiosis, the majority of the genes necessary for extant plastid function were presumably transferred to the host cell nucleus, since modern plastid genes encode only about 10% of the proteins needed for their metabolism and duplication (Ohyama et al. 1986; Shinozaki et al. 1986; Hiratsuka et al. 1989). As a consequence of gene transfer, most plastid proteins are synthesized on cytoplasmic 80s ribosomes and are subsequently transported into the plastid. During the translocation process, the transported protein is processed by the cleavage of a transit peptide which directs the import of the protein into the organelle (Lubben et al. 1988; Keegstra 1989).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitken, A. and R.Y. Stanier. 1977. Characterization of peptidoglycan from the cyanelles of Cyanophora paradoxa. J. Gen. Microbiol. 112:219–233.Google Scholar
  2. Aldrich, J., B. Chemey, E. Merlin, and J. Palmer. 1986. Sequence of the rbcL gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from Petunia. Nucl. Ac. Res. 14:9534.CrossRefGoogle Scholar
  3. Anderson, K. and J. Canton. 1987. Sequence analysis of the Alcaligenes eutrophus chromosomally encoded Ribulose Bisphosphate Carboxylase large and small subunit genes and their products. J. Bacteriol. 169:4547–4558.Google Scholar
  4. Assail, N.E., R. Mache, and S. Loiseaux-de Goër. 1990. Evidence for a composite phylogenetic origin of the plastid genome of the brown alga Pylaiella littorales (L.) Kjellm. Plant Mol. Biol. 15:307–315.CrossRefGoogle Scholar
  5. Assail, N.-E., W.F. Martin, C.C. Sommerville, and S. Loiseaux-de Goër. 1991. Evolution of the Rubisco operon from procaryotes to algae: structure and analysis of the rbcS gene of the brown alga Pylaiella littoralis. Plant Mol. Biol. 17:853–863.CrossRefGoogle Scholar
  6. Bayer, M.G. and H.A.E. Schenk. 1989. Ferredoxin of Cyanophora paradoxa is encoded on the cyanellar genome. Curr. Genet. 16:311–313.CrossRefGoogle Scholar
  7. Bhaya, D. and A. Grossmann. 1991. Targeting proteins to diatom plastids involves transport through an endoplasmatic reticulum. Mol. & Gen. Genet. 229:400–404.CrossRefGoogle Scholar
  8. Boczar, B.A., T.P. Delaney, and R.A. Cattolico. 1989. Gene for the Ribulose-1,5- bisphosphate carboxylase small subunit protein of the marine chromophyte Olisthodiscus luteus is similar to that of a chemoautotrotrophic bacterium. Proc. Natl. Acad. Sci. USA. 86:4996–4999.PubMedCrossRefGoogle Scholar
  9. Bohnert, H.J., C. Michalowski, S. Bevaqua, H. Mucke, and W. Loeffelhardt. 1985. Cyanelle DNA from Cyanophora paradoxa. Physical mapping and location of protein coding regions. Mol. & Gen. Genet. 201:565–574.CrossRefGoogle Scholar
  10. Bryant, D.A. and V.L. Stirewalt. 1990. The cyanelle genome of Cyanophora paradoxa encodes ribosomal proteins not encoded by the chloroplast genome of higher plants. FEBS Leu. 259:273–280.CrossRefGoogle Scholar
  11. Chan, R.L., M. Keller, J. Canaday, J.H. Weil, and P. Imbault. 1990. Eight small subunits of Euglena Ribulose-1,5-bisphosphate carboxylase/oxygenase are translated from a large mRNA as a polyprotein. EMBO J. 9:333–338.PubMedGoogle Scholar
  12. Coleman A.W. and L.J. Goff. 1991. DNA analysis of eucaryotic algal species. J. Phycol. 27:463–473.CrossRefGoogle Scholar
  13. Curtis S.E. and R. Haselkorn. 1983. Isolation and sequence of the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase from the cyanobacterium Anabaena 7120. Proc. Natl. Acad. Sci. USA 80:1835–1839.PubMedCrossRefGoogle Scholar
  14. Curtis, S.E. and R. Haselkorn. 1984. Isolation sequence and expression of two members of the 32 kD thylakoid membrane protein gene family from the cyanobacterium Anabaena 7120. Plant Mol. Biol. 3:249–258.CrossRefGoogle Scholar
  15. Deng, X.W. and W. Gruissem. 1987. Control of plastid gene expression during development: the limited role of transcriptional regulation. Cell 49:379–387.PubMedCrossRefGoogle Scholar
  16. Douglas, S.E. 1988. Physical mapping of the plastid genome from the chlorophyll c-containing alga, Cryptomonas Ф Curr. Genet. 14:591–598.CrossRefGoogle Scholar
  17. Douglas, S.E. 1992. A secY homologue is found in the plastid genome of Cryptomonas Φ. FEBS Leu. 298:93–96.PubMedCrossRefGoogle Scholar
  18. Douglas, S.E. and D.G. Durnford. 1989. The small subunit of ribulose-1,5bisphosphate carboxylase is plastid encoded in the chlorophyll c-containing alga CryptomonasΦ. Plant Mol. Biol. 13:13–20.PubMedCrossRefGoogle Scholar
  19. Douglas, S.E., D.G. Durnford, and C.W. Morden. 1990. Nucleotide sequence of the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from Cryptomonas Ф: evidence supporting the polyphyletic origin of plastids J. Phycol. 26:500–508.CrossRefGoogle Scholar
  20. Douglas, S.E., C.A. Murphy, D.F. Spencer, and M.W. Gray. 1991. Cryptomonad algae are evolutionary chimaers of two phylogenetically distinct unicellular eucaryotes. Nature 350:148–151.PubMedCrossRefGoogle Scholar
  21. Douglas, S.E. and S. Turner. 1991. Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor. J. Mol. EvoL 33:267–273.PubMedCrossRefGoogle Scholar
  22. Dron, M., M. Rahire, and J.D. Rochaix. 1982. Sequence of the chloroplast DNA region of Chlanzydomonas reinhardii containing the gene of the large subunit of ribulose-1,5-bisphosphate carboxylase and parts of its flanking regions. J. Mol. Biol. 162:775–793.PubMedCrossRefGoogle Scholar
  23. Evrad, J.L., C. Johnson, I. Janssen, W. Löffelhardt, J.H. Weil, and M. Kuntz. 1990. The cyanelle genome of Cyanophora paradoxa, unlike the chloroplast genome, codes for the ribosomal L3 protein. Nucl. Ac. Res. 18:1115–1119.CrossRefGoogle Scholar
  24. Fluegge, U.I. and H.W. Heldt. 1991. Metabolite translocators of the chloroplast envelope. Annu. Rev. Plant PhysioL Plant MoL BioL 42:129–144.CrossRefGoogle Scholar
  25. Gibbs, S.P. 1978. The chloroplasts of Euglena may have evolved from symbiotic green algae. Can. J. Bot. 56:2883–2889.CrossRefGoogle Scholar
  26. Gibbs, S.P. 1981. The plastids of some algal groups may have evolved from endosymbiotic eucaryotic algae. Annu. NY Acad. Sci. 361:193–207. Reprinted in this volumeCrossRefGoogle Scholar
  27. Gingrich, J.C. and R.B. Hallik. 1985. The Euglena gracilis ribulose-1,5bisphosphate carboxylase gene. II. The spliced mRNA and its product. J. Mol. BioL 260:16162–16168.Google Scholar
  28. Giovannoni, S.J., S. Turner, G.J. Olsen, S. Barns, D.J. Lane, and N.R. Pace. 1988. Evolutionary relationships among cyanobacteria and green chloroplasts. J. BacterioL 8/88:3548–3592.Google Scholar
  29. Goldschmidt-Clermont, M. and M. Rahire. 1986. Sequence, evolution and differential expression of the two genes encoding variant small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardii. J. Mol. BioL 191:421–432.PubMedCrossRefGoogle Scholar
  30. Gray, M.W. 1989. The evolutionary origin of organelles. Trends Genet. 5:294–299.PubMedCrossRefGoogle Scholar
  31. Gruissem, W. 1989. Chloroplast gene expression: how plants turn their plastids on. Cell 56:161–170.PubMedCrossRefGoogle Scholar
  32. Haberhausen, G., K. Valentin, and K. Zetsche. 1992. Organization and sequence of photosynthetic genes from the plastid genome of the holoparasitic flowering plant Cuscuta reflexa. Mol. & Gen. Genet. 232:154–161.CrossRefGoogle Scholar
  33. Hansmann, P., H. Falk, U. Scheer, and P. Sitte. 1986. Ultrastructural localization of DNA in two Crypromonad species by use of a monoclonal DNA antibody. Eur. J. Cell BioL 42:152–160.Google Scholar
  34. Hansmann, P., H.G. Falk, P. Sitte. 1985. DNA in the nucleomorph of Cryptomonas demonstrated by DAPI fluorescence. Z. Naturforsch. 40c:933–935.Google Scholar
  35. Hardison, L.K, B.A. Boczar, A.E. Reynolds, and R.A. Cattolico. 1992. A description of the Rubisco large subunit gene and its transcript in Olisthodiscus luteus. Plant MoL Biol. 18:595–599.PubMedCrossRefGoogle Scholar
  36. Higgins, D.G., A.J. Bleasby, R. Fuchs. 1992. CLUSTAL-V - Improved software for multiple sequence alignment. CALBIOS 8:189–191.Google Scholar
  37. Higgins, D.G. and P.M. Sharp. 1988. Clustal: a package for performing multiple sequence alignments on a microcomputer. Gene 73:237–244.PubMedCrossRefGoogle Scholar
  38. Hiratsuka, J., H. Shimada, R. Whittier, T. Ishibashi, M. Sakamoto, M. Mori, C. Kondo, Y. Honji, C.R. Sun, B.Y. Meng, Y.Q. Li, A. Kanno, Y. Nishizawa, A. Hirai, K. Shinozaki, and M. Sugiura. 1989. The complete sequence of the rice (Oryza sativa) cloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. & Gen. Genet. 217:185–197.CrossRefGoogle Scholar
  39. Hwang, S.R. and F.R. Tabita. 1989. Cloning and expression of the chloroplast encoded rbcL and rbcS genes from the marine diatom Cylindrotheca sp. strain NI. Plant Mol. BioL 13:69–79.PubMedCrossRefGoogle Scholar
  40. Hwang, S.R. and F.R. Tabita. 1991. Acyl carrier protein-derived sequence encoded by the chloroplast genome in the marine diatom Cylindrotheca sp. strain Nl. J. BioL Chem. 266:13492–13494.PubMedGoogle Scholar
  41. Janssen, I., J. Jakowitsch, C.B. Michalowski, H.J. Bohnert, and W. Löffelhardt. 1988. Evolutionary relationship of psbA genes from cyanobacteria, cyanelles and plastids. Curr. Genet. 15:335–340.CrossRefGoogle Scholar
  42. Jehn, U. and K. Zetsche. 1988. In vitro synthesis of the cyanelle proteins of Cyanophora paradoxa by isolated cyanelles and cyanelle RNA. Planta 173:58–60.CrossRefGoogle Scholar
  43. Keegstra, K. 1989. Transport and routing of proteins into chloroplasts. Cell 56:247–253.PubMedCrossRefGoogle Scholar
  44. Kessler, U., U. Maid, K. Zetsche. 1992. An equivalent to bacterial ompR genes is encoded on the plastid genome of red algae. Plant Mol. Biol. 18:777–780.PubMedCrossRefGoogle Scholar
  45. Kobayashi, H., A.M. Viale, T. Takabe, K. Wada, K. Shinozaki, and K. Kobayashi. 1991. Sequence and expression of genes encoding the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase from Chromatium vinosum. Gene 97:55–62.PubMedCrossRefGoogle Scholar
  46. Koller, B. and H. Delius. 1980. Vicia faba chloroplast DNA has only one set of ribosomal RNA genes as shown by partial denaturation mapping and R-loop analysis. Mol. Gen. Genet. 178:261–269.CrossRefGoogle Scholar
  47. Kolodner, R. and K.K. Tewari. 1979. Inverted repeats in chloroplasts from higher plants. Proc. Natl. Acad. Sci. USA 76:41–45.PubMedCrossRefGoogle Scholar
  48. Kostrzewa, M., K. Valentin, U. Maid, R. Radetzky, and K. Zetsche. 1990. Structure of the Rubisco operon from the multicellular red alga Antithamnion spec. Curr. Genet. 18:465–469.PubMedCrossRefGoogle Scholar
  49. Kowallik, K.V. 1989. Molecular aspects and phylogenetic implications of plastid genomes of certain Chromophytes. p. 99–122. In: The Chromophytic Algae, Problems and Perspectives, J.C. Green, B.S.C. Leadbeater, W.L. Diver (eds.). Clarendon Press, Oxford.Google Scholar
  50. Kueck, U. 1989. The intron of a plastid gene from a green alga contains an open reading frame for a reverse transcriptase-like enzyme. Mol. Gen. Genet. 218:257–265.CrossRefGoogle Scholar
  51. Kuhsel, M. and K.V. Kowallik. 1987. The plastome of a brown alga, Dictyota dichotoma. II Location of structural genes coding for ribosomal RNAs, the large subunit of ribulose-1,5-bisphosphate, carboxylase/oxygenase and for polypeptides of Photosystems I and II. Mol. Gen. Genet. 207:361–368.CrossRefGoogle Scholar
  52. Kuhsel, M.G., R. Strickland, and J.D. Palmer. 1990. An ancient group Iintron shared by eubacteria and chloroplasts. Science 250:1570–1573.PubMedCrossRefGoogle Scholar
  53. Kyle, D.J. 1985. The 32,000 dalton QB protein of photosystem II.Photochem. Photobiol. 41:107–116.CrossRefGoogle Scholar
  54. Lewin, R.A. 1976. Prochlorophyta as a proposed new division of algae. Nature 261:697–698.PubMedCrossRefGoogle Scholar
  55. Li, N. and R.A. Cattolico. 1987. Chloroplast genome characterization in the red alga Grifthsia pacifica. Plant Mol. Biol. 209:343–351.Google Scholar
  56. Linne von Berg, K.H., and K.V. Kowallik. 1988. Structural organization and evolution of the plastid genome of Vaucheria sessilis. BioSystems 21:239247.Google Scholar
  57. Loiseaux-de Goër, S., Y. Markowicz, J. Dalmon, H. Audren. 1988. Physical maps of the two plastid DNA molecules of the brown alga Pylaiella littorales (L.) Kjellm. Curr. Genet. 14:155–162.CrossRefGoogle Scholar
  58. Lubben, T.H., S.M. Theg, and K. Keegstra. 1988. Transport of proteins into chloroplasts. Photo.syn. Res. 17:173–194.CrossRefGoogle Scholar
  59. Ludwig, M. and S.P. Gibbs. 1985. DNA is present in the nucleous of cryptomonads: further evidence that the chloroplast evolved from a cucaryotic endosymgiont. Protoplasma 127:9–20.CrossRefGoogle Scholar
  60. Maid, U., R. Steinmueller, K. Zetsche. 1992. Structure and expression of a plastid-encoded groEL homologous heat-shock gene in a thermophilic unicellular red alga. Curr. Genet. In press.Google Scholar
  61. Maid, U., K. Valentin, and K. Zetsche. 1990. The psbA gene from a red algae resembles those from cyanobacteria and cyanelles. Curr. Genet. 17:225–259.CrossRefGoogle Scholar
  62. Maid, U. and K. Zetsche. 1991. Structural features of the plastid ribosomal RNA operons of two red algae: Antithamnion spec. and Cyanidium caldarium. Plant MoL Biol. 16:537–546.PubMedCrossRefGoogle Scholar
  63. Maier, U.G., C.J.B. Hofmann, S. Eschbach, J. Wolters, and G.L. Igloi. 1991. Demonstration of nucleomorph-encoded eucaryotic small subunit ribosomal RNA in cryptomonads. Mol. & Gen. Genet. 230:155–160.CrossRefGoogle Scholar
  64. Manhart, J.R. and J.D. Palmer. 1990. The gain of two chloroplast tRNA introns marks the green algal ancestor of land plants. Nature 345:268–270.PubMedCrossRefGoogle Scholar
  65. Manhart, J.R. and R.A. Von der Haar. 1991. Intron revealed by nucleotide sequence of large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from Codium fragile (Chlorophyta); phylogenetic analysis J. PhycoL 27:613–617.CrossRefGoogle Scholar
  66. Margulis, L. 1981. Symbiosis in Cell Evolution. W.H Freeman & Co., San Francisco.Google Scholar
  67. Markowicz, Y. and S. Loiseaux-de Gãer. 1991. Plastid genomes of the Rhodophta and Chromophyta constitute a distinct lineage which differs from that of the Chlorophyta and have a composite phylogenetic origin, perhaps like that of the Euglenophyta. Curr. Genet. 20:427–430.PubMedCrossRefGoogle Scholar
  68. Matsuoka, M., Y. Kano-Muramati, Y. Tanaka, Y. Ozeki, and N. Yamamoto. 1985. Nucleotide sequence of cDNA encoding the small subunit of ribulose-1,5-bisphosphate carboxylase from maize. J. Biochem. 102:673–676.Google Scholar
  69. Mazur, B.J. and C.F. Chui. 1985. Sequence of a genomic clone for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from tobacco. Nucl. Ac. Res. 13:2373–2386.CrossRefGoogle Scholar
  70. McIntosh, L., C. Poulsen, and L. Bogorad. 1980. Chloroplast gene sequence for the large subunit of ribulose-1,5-bisphosphate carboxylase of maize. Nature 288:556–560.CrossRefGoogle Scholar
  71. Michalowski, C.B., R. Flachmann, W. Loeffelhardt, and H.J. Bohnert. 1991a. Gene nadA,encoding quinolinate synthetase is located on the cyanelle DNA from Cyanophora paradoxa. Plant Physiol. 95:329–330.CrossRefGoogle Scholar
  72. Michalowski, C.B., W. Loeffelhardt, and H.J. Bohnert. 1991b. An ORF323 with homology to crtE, specifying prephytoene pyrophosphate dehydrogenase, is encoded by cyanelle DNA in the eucaryotic alga Cyanophora paradoxa. J. Biol. Chem. 266:11866–11870.Google Scholar
  73. Miziorko, H.M. and G.H. Lorimer. 1983. Ribulose-1,5-bisphosphate carboxylase. Annu. Rev. Biochem. 52:507–535.PubMedCrossRefGoogle Scholar
  74. Morden, C.W. and S.S. Golden. 1989. PsbA genes indicate a common ancestry of Prochlorophytes and chloroplasts. Nature 337:382–385.PubMedCrossRefGoogle Scholar
  75. Morden, C.W. and S.S. Golden. 1991. Sequence analysis and phylogenetic reconstruction of the genes encoding the large and small subunits of ribulose-1,5-bisphosphate carboxylase/ oxygenase from the chlorophyll b-containing procaryote Prochlorothrix hollandica. J. Mol. Evol. 32:379–395.PubMedCrossRefGoogle Scholar
  76. Nargang, F., L. McIntosh, and C. Somerville. 1984. Nucleotide sequence of the ribulose-1,5-bisphosphate carboxylase gene from Rhodospirillum rubrum. Mol. & Gen. Genet. 193:220–224.CrossRefGoogle Scholar
  77. Nierzwicki-Bauer, S.A., S.E. Curtis, and R. Haselkorn. 1984. Cotranscription of genes encoding the small and large subunit of ribulose-1,5-bisphosphate carboxylase in the cyanobacterium Anabaena 7120. Proc. NatL Acad. Sci. USA 81:5961–5965.PubMedCrossRefGoogle Scholar
  78. Ohyama, K., H. Fukuzawa, T. Kohchi, H. Shirai, T. Sano, S. Sano, K. Umesono, Y. Shiki, M. Takeuchi, Z. Chang, S. Aota, H. Inokuchi, and H. Ozeki. 1986. Chloroplast genome organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574.CrossRefGoogle Scholar
  79. Palenik, B. and R. Haselkorn. 1992. Multiple evolutionary origins of prochlorophytes, the chlorophyll b-containing procaryotes. Nature 355:265–267.PubMedCrossRefGoogle Scholar
  80. Palmer, J.D. 1985. Comparative organization of chloroplast genomes.Annu. Rev. Genet. 19:325–354.CrossRefGoogle Scholar
  81. Reith, M. 1992. psaE andtrnS(CGA) are encoded on the plastid genome of the red alga Porphyra umbilicalis. Plant Mol. BioL 18:773–775.PubMedCrossRefGoogle Scholar
  82. Reith, M. and R.A. Cattolico. 1986. Inverted repeat of Olisthodiscus luteus chloroplast DNA contains genes for both subunits of ribulose-1,5bisphosphate carboxylase and the 32,000-dalton QB protein. Proc. Natl. Acad. Sci. USA 83:8599–8603.PubMedCrossRefGoogle Scholar
  83. Reith, M. and J. Munholland. 1991. An hsp70 homolog is encoded on the plastid genome of the red alga, Porphyra umbilicalis. FEBS Lett. 294:116–120.PubMedCrossRefGoogle Scholar
  84. Reynolds, A., J. Chesnik, J. Woolford, and R.A Cattolico. 1991. Sequence analysis and regulation of thioredoxin genes in two Rhodophytes. Third international congress of Plant Mol. Biol. R. Hallik (ed.) Abstract 1944.Google Scholar
  85. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425.PubMedGoogle Scholar
  86. Scaramuzzi, C.D., H.W. Stokes, R.G. Hiller. 1992. Heat shock Hsp70 protein is chloroplast-encoded in the chromophytic alga Paylova lutherii. Plant Mol. BioL 18:467–476.PubMedCrossRefGoogle Scholar
  87. Schatz, P.J. and J. Beckwith. 1990. Genetic analysis of protein export in Escherichia coll. Annu. Rev. Genet. 24:215–248.PubMedCrossRefGoogle Scholar
  88. Scherer, S., G. Herrmann, J. Hirschberg, and P. Boeger. 1991. Evidence for multiple xenogous origins of plastids: comparison of psbA genes with a xanthophyte sequence. Curr. Genet. 19:503–507.PubMedCrossRefGoogle Scholar
  89. Seewald, E. and E. Stackebrandt. 1982. Partial sequence of 16s ribosomal RNA and the phylogeny of Prochloron. Nature 295:618–620.CrossRefGoogle Scholar
  90. Shinozaki, K. and M. Sugiura. 1983. The gene for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is located close to the gene for the large subunit in the cyanobacterium Anacystis nidulans 6301. NucL Ac. Res. 11:6957–6964.CrossRefGoogle Scholar
  91. Shinozaki, K., C. Yamada, N. Takahata, and M. Sugiura. 1983. Molecular cloning and sequence analysis of the cyanobacterial gene for the large subunit of nbulose-1,5-bisphosphate carboxylase/oxygenase. Proc. NatL Acad. Sci. USA 80:4050–4054.PubMedCrossRefGoogle Scholar
  92. Shinozaki, K. M. Ohme, T. Tanaka, T. Wakasugi, N. Hayashida, T. Matsubayashi, N. Zaita, J. Chunwongse, J. Obokata, K. YamaguchiShinozaki, C. Ohto, K. Torazawa, B.Y. Meng, M. Sugita, H. Deno, T. Kamogashira, K. Yamada, J. Kusuda, F. Takaiwa, A. Kato, N. Tohdoh, H. Shimada and M. Sugiura. 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5:2043–2049.PubMedGoogle Scholar
  93. Shivji, M.S. 1991. Organization of the chloroplast genome in the red alga Porphyra yezoensis. Curr. Genet. 19:49–54.CrossRefGoogle Scholar
  94. Shivji, M.S., N. Li, and R.A. Cattolico. 1992. Structure and organization of rhodophyte and chromophyte plastid genomes: implications for the ancestry of plastids. Mol. & Gen. Genet. 232:65–73.CrossRefGoogle Scholar
  95. Sitte, P. 1990. Phylogenetische Aspekte der Zellevolution. BioL Rundschau 28:1–18.Google Scholar
  96. Starnes, S.M., D.H. Lambert, E.S. Maxwell, J.R. Stevens, R.D. Porter, and J.M. Shively. 1985. Cotranscription of the large and small subunit genes of ribulose-1,5-bisphosphate carboxylase/ oxygenase in Cyanophora paradoxa. FEMS Microbiol. Leu. 28:165–169.CrossRefGoogle Scholar
  97. Timmis, J.N. and N.S. Scott. 1983. Spinach nuclear and chloroplast DNA have homologous sequences. Nature 305:65–67.CrossRefGoogle Scholar
  98. Turner, S., T. Burger-Wiersma, S.J. Giovannoni, and L.R. Mur. 1989. The relationship of a prochlorophyte Prochlorothrix hollandica to green chloroplasts. Nature 337:380–382.PubMedCrossRefGoogle Scholar
  99. Urbach, E., D.L. Robertson, and S.W. Chisholm. 1992. Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature 355:267–270.PubMedCrossRefGoogle Scholar
  100. Valentin, K. 1992. SecA is plastid-encoded in a red alga: implications for the evolution of plastid genomes and the thylakoid protein import apparatus. MoL & Gen. Genet. In press.Google Scholar
  101. Valentin, K., U. Maid, A. Emich, K. Zetsche. 1992. Organization and expression of a phycobiliprotein gene cluster from the unicellular red alga Cyanidium caldarium. Plant MoL Bid. In press.Google Scholar
  102. Valentin, K. and K. Zetsche. 1989. The genes of both subunits of ribulose-1,5- bisphosphate carboxylase constitute an operon on the plastome of a red alga. Curr. Genet. 16:203–209.PubMedCrossRefGoogle Scholar
  103. Valentin, K. and K. Zetsche. 1990a. Structure of the Rubisco operon from the unicellular red alga Cyanidium caldarium: evidence for a polyphyletic origin of the plastids. Mol. & Gen. Genet. 222:425–430.CrossRefGoogle Scholar
  104. Valentin, K. and K. Zetsche. 1990b. Nucleotide sequence of the gene for the large subunit of Rubisco from Cyanophora paradoxa: phylogenetic implications. Curr. Genet. 18:199–202. CrossRefGoogle Scholar
  105. Valentin, K. and K. Zetsche. 1990c. Rubisco genes indicate a close phylogenetic relation between plastids of Chromophyta and Rhodophyta. Plant Mol. Biol. 15:575–584.CrossRefGoogle Scholar
  106. Van den Eynde, H., R. De Baere, E. De Roeck, Y. Van De Peer, A. Vandenberghe, P. Willekens, and R. De Wachter. 1988. The 5s ribosomal RNA sequences of a red algal rhodoplast and a gymnosperm chloroplast. Implications for the evolution of plastid and cyanobacteria. J. Mol. Evol. 27:126–132.PubMedCrossRefGoogle Scholar
  107. Viale, A., H. Kobayashi, and T. Akazawa. 1989. Expressed genes for plant-type ribulose-1,5-bisphosphate carboxylase/oxygenase in the photosynthetic bacterium Chromatium vinosum, which possesses two complete sets of genes. J. Bacteriol. 171:2391–2400.PubMedGoogle Scholar
  108. Wang, S. and X.Q. Liu. 1991. The plastid genome of Cryptomonas encodes an hsp70-like protein, a histone-like protein, and an acyl carrier protein. Proc. Natl. Acad. Sci. USA 88:10783–10787.PubMedCrossRefGoogle Scholar
  109. Whatley, J.M. and F.R. Whatley 1981. Chloroplast evolution. New Phytol. 87:233–247.CrossRefGoogle Scholar
  110. Wickner, W., J.M. Driessen, and F.U. Hartl. 1991. The enzymology of protein translocation across the Escherichia coli plasma membrane. Annu. Rev. Biochem. 60:101–124.PubMedCrossRefGoogle Scholar
  111. Winhauer, T., S. Jiiger, K. Valentin, and K. Zetsche. 1991. Structural similarities among psbA genes from red and brown algae. Curr. Genet. 20:177–180.PubMedCrossRefGoogle Scholar
  112. Wolf, K.H., W.H. Li, and P.M. Sharp. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. USA 84:9054–9058.CrossRefGoogle Scholar
  113. Xu, M.W., S.D. Kathe, H. Goodrich-Blair, S.A. Nierzwicki-Bauer, and D.A. Shub. 1990. Bacterial origin of a chloroplast intron: conserved self-splicing group I introns in Cyanobacteria. Science 250:1566–1570.PubMedCrossRefGoogle Scholar
  114. Zurawski, G., H.J. Bohnert, P.R. Whitfeld, and W. Bottomly. 1982. Nucleotide sequence of the gene for the Mr 32,000 thylakoid membrane protein from Spinacia oleracea and Nicotiana debney predict a totally conserved primary translation product of Mr 38,950. Proc. Natl. Acad. Sci. USA 79:7699–7703.PubMedCrossRefGoogle Scholar
  115. Zurawski, G., B. Perrot, W. Bottomly, and P.R. Whitfeld. 1981. The structure of the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase from spinach chloroplast DNA. Nucl. Ac. Res. 9:3251–3269.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • Klaus Valentin
    • 1
  • Rose Ann Cattolico
    • 1
  • Klaus Zetsche
    • 2
  1. 1.Department of Botany KB-15University of WashingtonSeattleUSA
  2. 2.Institut für PflanzenphysiologieJustus Liebig Universität63 GiessenGermany

Personalised recommendations