Skip to main content

Coupling of the Atmosphere with Vegetation

  • Chapter
Vegetation Dynamics & Global Change

Abstract

More than two-thirds of the Earth is covered with oceans. Nonetheless, as pointed out by Verstraete and Dickinson (1986), continental surfaces provide much of the spatial and temporal variability that makes the weather and climate. To a large extent, vegetation determines the physical characteristics of ice-free continental surfaces, and hence key climatic parameters such as albedo, surface energy fluxes, and so on (Shukla and Mintz 1982; Dickinson 1984; Dickinson and Hanson 1984; Wilson et al. 1987). Conversely, there exists a strong connection between vegetation and climate (e.g., Walter 1973; Woodward 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brutsaert, W. (1982). Evaporation into the Atmosphere: Theory, History, and Applications. Dordrecht: D. Reidel.

    Google Scholar 

  • Calder, I. R. (1977). A model of transpiration and interception loss from spruce forest in Plynlimon, Central Wales. Journal of Hydrology, 33, 247–65

    Article  Google Scholar 

  • Deardorff, J. (1978). Efficient prediction of ground temperature and moisture with inclusion of a layer of vegetation. Journal of Geophysical Research, 83, 1889–903.

    Article  Google Scholar 

  • Dickinson, R. E. (1984). Modeling evapotranspiration for three-dimensional global climate models. In Climate Processes and Climate Sensitivity, ed. J. E. Hansen and T. Takahashi, pp. 58–72. Geophysical Monograph 29. American Geophysical Union, Washington, D.C.

    Chapter  Google Scholar 

  • Dickinson, R. E. and Hanson, B. (1984). Vegetation-albedo feedbacks. In Climate Processes and Climate Sensitivity, ed. J. E. Hansen and T. Takahashi, pp. 180–6. Geophysical Monograph 29, American Geophysical Union, Washington, D.C.

    Chapter  Google Scholar 

  • Gates, D. M. and Papain, L. E. (1971). Atlas of Energy Budgets of Plant Leaves. New York: Academic Press.

    Google Scholar 

  • Hall, W. A. (1971). Biological hydrological systems. In Biological Effects in the Hydrological Cycle—Terrestrial Phase, ed. E. J. Monke, pp. 1–7. Proceedings of The Third International Seminar for Hydrology Professors, UNESCO, Paris, France.

    Google Scholar 

  • Halldin, S. and Lindroth, A. (1986). Pine forest microclimate simulation using different diffusivities. Boundary-Layer Meteorology, 35, 103–23.

    Article  Google Scholar 

  • Jarvis, P. G. and McNaughton, K. G. (1986). Stomatal control of transpiration: Scaling up from leaf to region. Advances in Ecological Research, 15, 1–49.

    Article  Google Scholar 

  • Jones, H. G. (1976). Crop characteristics and the ratio between assimilation and transpiration. Journal of Applied Ecology, 13, 605–22.

    Article  Google Scholar 

  • Jones, H. G. (1983). Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Martin, Ph. (1989). The significance of radiative coupling between vegetation and the atmosphere. Agricultural and Forest Meteorology, 49, 45–53.

    Article  Google Scholar 

  • McNaughton, K. G. (1976). Evaporation and advection. I. Evaporation from extensive homogeneous surfaces. Quarterly Journal of the Royal Meteorological Society, 102, 181–191.

    Article  Google Scholar 

  • McNaughton, K. G. and Jarvis, P. G. (1983). Predicting effects of vegetation changes on transpiration and evaporation. In Water Deficit and Plant Growth, ed. T. T. Kozlowski, pp. 1–47. New York: Academic Press.

    Google Scholar 

  • Miller, P. C. (1971). Sampling to estimate mean leaf temperatures and transpiration rates in vegetation canopies. Ecology, 52, 885–9.

    Article  Google Scholar 

  • Monteith, J. L. (1973). Principles of Environmental Physics. London: Edward Arnold.

    Google Scholar 

  • Paw U. K. T. and Gao, W. (1988). Applications of solutions to non-linear energy budget equations. Agricultural and Forest Meteorology, 43, 121–45.

    Article  Google Scholar 

  • Penman, H. L. (1948). Natural evaporation from open water, bare soil, and grass. Proceedings of the Royal Society A, 193, 120–45.

    Article  CAS  Google Scholar 

  • Rosenberg, N. J., Blad, B. L. and Verma, S. B. (1983). Microclimate: The Biological Environment. 2nd edition. New York: John Wiley & Sons.

    Google Scholar 

  • Rutter, A. J. (1975). The hydrological cycle in vegetation. In Vegetation and the Atmosphere, Volume 1, Principles, ed. J. L. Montieth, pp. 111–54. London: Academic Press.

    Google Scholar 

  • Shukla, J. and Mintz, Y. (1982). Influences of land-surface evapotranspiration on the earth’s climate. Science, 215, 1498–500.

    Article  PubMed  CAS  Google Scholar 

  • Slabbers, P. J. (1977). Surface roughness of crops and potential evapotranspiration. Journal of Hydrology, 34, 181–91.

    Article  Google Scholar 

  • Stewart, J. B. and de Bruin, H.A.R. (1985). Preliminary study of the dependence of surface conductance of Thetford Forest on environmental conditions. In The Forest-Atmosphere Interactions, ed. B.A. Hutchison and B.B. Hicks, pp. 91–104. Dordrecht, The Netherlands: Reidel.

    Chapter  Google Scholar 

  • Verstraete, M.M. and Dickinson, R.E. (1986). Modeling surface processes in atmospheric general circulation models. Annales Geophysicae, 4, B, $, 357–64.

    Google Scholar 

  • Walter, H. (1973). Vegetation of the Earth in Relation to Climate and the Eco-Physiological Conditions. New York: Springer-Verlag.

    Google Scholar 

  • Wilson, M.F., Henderson-Sellers, A., Dickinson, R.E. and Kennedy, P.J. (1987). Sensitivity of the Biosphere-Atmosphere Transfer Scheme (BATS) to the inclusion of variable soil characteristics. Journal of Climate and Applied Meteorology, 26, 341–62.

    Article  Google Scholar 

  • Woodward, F.I. (1987). Climate and Plant Distribution. Cambridge: Cambridge University Press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Martin, P. (1993). Coupling of the Atmosphere with Vegetation. In: Solomon, A.M., Shugart, H.H. (eds) Vegetation Dynamics & Global Change. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2816-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2816-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6217-3

  • Online ISBN: 978-1-4615-2816-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics