Skip to main content

Rapid Simulations of Vegetation Stand Dynamics with Mixed Life-Forms

  • Chapter
Vegetation Dynamics & Global Change

Abstract

The goal formulated by the global vegetation modeling project at The International Institute for Applied Systems Analysis, IIASA, (Prentice et al. 1989) was to develop a mechanistic vegetation model suitable for exploring processes of global vegetation change in a changing environment over time-scales of decades to centuries, taking into account the processes of plant growth, regeneration, mortality, disturbance regimes, and dispersal that mediate the response to environmental change. Gap models, a class of vegetation dynamics simulation models, have desirable features for use in such a project. They operate at the relevant time-scale and have proven useful in clarifying processes of forest succession and response to disturbance (Shugart 1984) and climatic change (Solomon 1986) on local and regional scales in a variety of environments. So far, however, gap models have mainly been applied to forests and have not included the mixture of life-forms characteristic of most plant communities. (However, see Burton and Urban 1989; and Coffin and Lauenroth 1990.) Another limitation of gap models for global simulation purposes is that they appear to include an excessive amount of detail; for example, vegetation patches are described in terms of explicit characteristics of all individual plants rather than in terms of canopy and population structure, which are the effective variables governing competition (Fulton 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Burton, P. J. and Urban, D. L. (1989). Enhanced simulation of early secondary forest succession by incorporation multiple life form interaction and dispersal. In Forests of the World, Diversity and Dynamics (Abstracts), ed. E. Sjögren, Studies in Plant Ecology 18. Uppsala, Sweden: Svenska Växtgeografiska Sällskapet.

    Google Scholar 

  • Busgen, M. and E. Münch. (1929). The Structure and Life of Forest Trees. London: Chapman and Hall.

    Google Scholar 

  • Coffin, D. P. and Lauenroth, W. K. (1990). A gap dynamics simulation model of succession in a semiarid grassland. Ecological Modelling, 49, 229–36.

    Article  Google Scholar 

  • Fulton, M. R. (1991). A computationally efficient forest succession model: Design and initial tests. Forest Ecology and Management, 42, 23–34.

    Article  Google Scholar 

  • Harper, J. L. (1977). Population Biology of Plants. London: Academic Press.

    Google Scholar 

  • Leemans, R. (1986). Structure of the primaeval coniferous forest of Fiby. In Forest Dynamics Research in Western and Central Europe, (ed.), J. Fanta pp. 221–30. Wageningen: PUDOC, Wageningen.

    Google Scholar 

  • Leemans, R. and Prentice, I. C. (1987). Description and simulation of tree-layer composition and size distributions in a primaeval Picea-Pinus forest. Vegetatio, 69, 147–56.

    Article  Google Scholar 

  • Leemans, R. and Prentice, I. C. (1989). FORSKA, a general forest succession model. Meddelanden from Växtbiologiska Institutionen, Uppsala, Sweden.

    Google Scholar 

  • May, R. M. (1981). Models for single populations. In Theoretical Ecology, ed. R. M. Max, Oxford: Blackwell.

    Google Scholar 

  • Prentice, I. C. (1986). The design of a forest succession model. In Forest Dynamics Research in Western and Central Europe, ed. J. Fanta, pp. 253–56. Wageningen: PUDOC, Wageningen.

    Google Scholar 

  • Prentice, I. C., and Leemans, R. (1990). Pattern and process and the dynamics of forest structure: A simulation approach. Journal of Ecology, 78, 340–55.

    Article  Google Scholar 

  • Prentice, I. C., Webb, R. S., Ter-Mikaelian, M. T., Solomon, A. M., Smith, T. M., Pitovranov, S. E., Nikolov, N.T., Minin, A.A., Leemans, R., Lavorel, S., Korzukhin, M. D., Hrabovszky, J. P., Helmisaari, H. O., Harrison, S. P., Emanuel, W. R., and Bonan, G. B. (1989). Developing a global vegetation dynamics model: Results of an IIASA summer workshop. RR-89-7, International Institute for Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  • Ritchie, J. C. (1955). Biological Flora of the British Isles. Vaccinium vitis-idaea L. Journal of Ecology, 43, 701–08.

    Article  Google Scholar 

  • Ritchie, J. C. (1956). Biological Flora of the British Isles. Vaccinium myrtillus L. Journal of Ecology, 44, 291–99.

    Article  Google Scholar 

  • Shinozaki, K., Yoda, K., Hozumi, K., and Kira, T. (1964). A quantitative analysis of plant form—the pipe model theory. I—Basic analyses. Japanese Journal of Ecology, 14(3), 97–104.

    Google Scholar 

  • Shugart, H. H. (1984). A Theory of Forest Dynamics. New York: Springer-Verlag.

    Book  Google Scholar 

  • Smith, T. M. and Urban, D. L. (1988). Scale and resolution of forest structural pattern. Vegetatio, 74, 143–150.

    Article  Google Scholar 

  • Solomon, A. M. (1986). Transient response of forests to CO2-induced climate change: Simulation modeling experiments in eastern North America. Oecologia, 68, 567–79.

    Article  Google Scholar 

  • van Tongeren, O. and Prentice, I. C. (1986). A spatial simulation model for vegetation dynamics. Vegetatio, 65, 163–73.

    Article  Google Scholar 

  • Whittaker, R. H. and Levin, S. A. (1977). The role of mosaic phenomena in natural communities. Theoretical Population Biology, 12, 117–39.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fulton, M.R. (1993). Rapid Simulations of Vegetation Stand Dynamics with Mixed Life-Forms. In: Solomon, A.M., Shugart, H.H. (eds) Vegetation Dynamics & Global Change. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2816-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2816-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6217-3

  • Online ISBN: 978-1-4615-2816-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics