Skip to main content

Learning and Behavioral Ecology: Incomplete Information and Environmental Predictability

  • Chapter
Insect Learning

Abstract

When a foraging notonecif bug extracts the juices from a prey item, it will, at some point, stop extracting and begin to search for another prey item. Behavioral ecologists have found that predators, like my hypothetical notonectid, will extract a high proportion of the available resources from a given prey, taking a long time to do it, when prey are scarce, but the same predator will extract less and give up more quickly if prey are abundant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcock, J. 1979. Animal Behavior: An Evolutionary Approach. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Arnold, S.J. 1978. The evolution of a special class of modifiable behaviors in relation to environmental pattern. Am. Nat. 112:415–427.

    Article  Google Scholar 

  • Bitterman, M.E. 1975. The comparative analysis of learning. Science 188:699–709.

    Article  PubMed  CAS  Google Scholar 

  • Bobisud, L.I., and Potratz, C.J. 1976. One-trial versus multi-trial learning for a predator encountering a model-mimic system. Am. Nat. 110:121–128.

    Article  Google Scholar 

  • Colwell, R.K. 1974. Predictability, constancy and contingency of periodic phenomena. Ecology 55:1148–1153.

    Article  Google Scholar 

  • Estabrook G.F., and Jespersen, D.C. 1974. The strategy for a predator encountering a model-mimic system. Am. Nat. 108:443–457.

    Article  Google Scholar 

  • Fantino, E., and Abarca, N. 1985. Choice, optimal foraging, and the delay reduction hypothesis. Behay. Brain Sci. 8:315–362.

    Article  Google Scholar 

  • Garcia, J., Ervin, F.R., and Koelling, R.A. 1966. Learning with prolonged delay of reinforcement. Psychonom. Sci. 5:121–122.

    Google Scholar 

  • Garcia, J., and Koelling, R.A. 1966. Relation of cue to consequence in avoidance learning. Psychonom. Sci. 4:123–124.

    Google Scholar 

  • Gould, J.P. 1974. Risk, stochastic preference, and the value of information. J. Econ. Theory 8:64–84.

    Article  Google Scholar 

  • Gray, L. 1981. Genetic and experiential differences affect foraging behavior. In A.C. Kamil and T.D. Sargent (eds.), Foraging Behavior: Ecological, Ethological and Psychological Approaches. Garland STPM Press, New York, pp. 455–473.

    Google Scholar 

  • Green, R.F. 1980. Bayesian birds: a simple example of Oaten’s stochastic model of optimal foraging. Theor. Popul. Biol. 18:244–256.

    Article  Google Scholar 

  • Green, R.F. 1984. Stopping rules for optimal foragers. Am. Nat. 123:30–40.

    Article  Google Scholar 

  • Greenberg, R. 1985. A comparison of foliage discrimination learning in a specialist and a generalist species of migrant wood warbler (Aves: Parulidae). Can. J. Zool. 63:773–776.

    Article  Google Scholar 

  • Houston, A.I., Kacelnik, A., and McNamara, J.M. 1982. Some learning rules for acquiring information. In D.J. McFarland (ed.), Functional Ontogeny. Pitman Books, London, pp. 140–191.

    Google Scholar 

  • Iwasa, Y., Higashi, M., and Yamamura, N. 1981. Prey distribution as a factor determining the choice of optimal foraging strategy. Am. Nat. 117:710–723.

    Article  Google Scholar 

  • Johnston, T.D. 1982. The selective costs and benefits of learning: An evolutionary analysis. Adv. Study Behay. 12:65–106.

    Article  Google Scholar 

  • Johnston, T.D., and Turvey, M.T. 1980. An ecological metatheory for theories of learning. In G.H. Bower (ed.), The Psychology of Learning and Motivation: Advances in Research and Theory, Vol. 14, Academic Press, New York, pp. 147–205.

    Google Scholar 

  • Kacelnik, A., and Krebs, J.R. 1985. Learning to exploit patchily distributed food. In R.M. Sibly and R.H. Smith (eds.), Behavioral Ecology, 25th Symposium of the British Ecological Society. Blackwell Scientific Publications, Oxford, England, pp. 189–205.

    Google Scholar 

  • Kamil, A.C. 1983. Optimal foraging theory and the psychology of learning. Am. Zool. 23:291–302.

    Google Scholar 

  • Kamil, A.C. 1987. A synthetic approach to the study of animal intelligence. In D.W. Leger (ed.), Comparative Perspectives in Modern Psychology. University of Nebraska Press, Lincoln, NE, pp. 257–308.

    Google Scholar 

  • Krebs, J.R., Kacelnik, A., and Taylor, P. 1978. Test of optimal sampling by foraging great tits. Nature 275:27–31.

    Article  Google Scholar 

  • Levins, R. 1968. Evolution in Changing Environments. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Lima, S.L. 1983. Downy woodpecker foraging behavior: Efficient sampling in simple stochastic environments. Ecology 65:166–174.

    Article  Google Scholar 

  • Lima, S.L. 1985. Sampling behavior of starlings foraging in simple patch environments. Behay. Ecol. Sociobiol. 16:135–142.

    Article  Google Scholar 

  • Logue, A.W. 1988. Research on self-control: an integrating framework. Behay. Brain Sci. 11:665–709.

    Article  Google Scholar 

  • Mackintosh, N.J. 1983. General principles of learning. In T. Halliday and P.J.B. Slater (eds.), Animal Behaviour. Vol. 3: Genes, Development and Learning. W.H. Freeman, New York, pp. 149–177.

    Google Scholar 

  • Macphail, E.M. 1985. Vertebrate intelligence: The null hypothesis. In L. Weiskrantz (ed.), Animal Intelligence. Clarendon Press, Oxford, England, pp. 37–50.

    Google Scholar 

  • Mangel, M., and Clark, C.W. 1988. Dynamic Modeling in Behavior Ecology. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • McNamara, J.M. 1982. Optimal patch use in a stochastic environment. Theor. Popul. Biol. 21:269–288.

    Article  Google Scholar 

  • McNamara, J.M., and Houston, A.I. 1980. The application of statistical decision theory to animal behaviour. J. Theor. Biol. 85:673–690.

    Article  PubMed  CAS  Google Scholar 

  • Oaten, A. 1977. Optimal foraging in patches: A case for stochasticity. Theor. Popul. Biol. 12:263–285.

    Article  PubMed  CAS  Google Scholar 

  • Orians, G.H. 1981. Foraging behavior and the evolution of discriminatory abilities. In A.C. Kamil and T.D. Sargent (eds.), Foraging Behavior: Ecological, Ethological and Psychological Approaches. Garland STPM Press, New York, pp. 389–405.

    Google Scholar 

  • Papaj, D.R. 1986. Interpopulation differences in host preference and the evolution of learning in the butterfly, Battus philenor. Evolution 40:518–530.

    Article  Google Scholar 

  • Papaj, D.R., and Prokopy, R.J. 1989. Ecological and evolutionary aspects of learning in phytophagous insects. Annu. Rev. Entomol. 34:315–350.

    Article  Google Scholar 

  • Plotkin, H.C., and Odling-Smee, F.J. 1979. Learning, change, and evolution: An enquiry into the teleonomy of learning. Adv. Study Behay. 10:1–41.

    Article  Google Scholar 

  • Pulliam, H.R. 1981. Learning to forage optimally. In A.C. Kamil and T.D. Sargent (eds.), Foraging Behavior: Ecological, Ethological and Psychological Approaches. Garland STPM Press, New York, pp. 379–332.

    Google Scholar 

  • Pulliam, H.R, and Dunford, C. 1980. Programmed to learn: an essay on the evolution of culture. Columbia University Press, New York.

    Google Scholar 

  • Roper, T.J. 1983. Learning as a biological phenomenon. In T.R. Halliday and P.J.B. Slater (eds.), Genes, Development and Learning. W.H. Freeman, New York, pp. 178–212.

    Google Scholar 

  • Seligman, M.E.P., and Hager, J.L. 1972. Biological Boundaries of Learning. Appleton-Century-Crofts, New York.

    Google Scholar 

  • Shettleworth, S.J. 1975. Reinforcement and the organization of behavior in golden hamsters: hunger, environment, and food reinforcement. J. Exp. Psych. Anim. Behay. Proc. 1:56–87.

    Article  Google Scholar 

  • Shettleworth, S.J. 1978. Reinforcement and the organization of behavior in golden hamsters: sunflower seed and nest paper reinforcers. Anim Learn. Behay. 6:352–362.

    Article  Google Scholar 

  • Shettleworth, S.J. 1981. Reinforcement and the organization of behavior in golden hamsters: differential overshadowing of a CS by different responses. Q. J. Exp. Pysch. 33B:241–256.

    Google Scholar 

  • Shettleworth, S.J. 1984. Learning and behavioural ecology. In J.R. Krebs and N.B. Davies, (eds.), Behavioural Ecology: An Evolutionary Approach, 2nd ed. Blackwell Scientific Publications, Oxford, England, pp. 170–194.

    Google Scholar 

  • Shettleworth, S.J., Krebs, J.R., Stephens, D.W, and Gibbon, J. 1988. Tracking a fluctuating environment: A study of sampling. Anim Behay. 36:87–105.

    Article  Google Scholar 

  • Slobodkin, L.B., and Rapoport, A. 1974. An optimal strategy of evolution. Q. Rev. Biol. 49:181–200.

    Article  PubMed  CAS  Google Scholar 

  • Staddon, J.E.R. 1983. Adaptive Behavior and Learning. Cambridge University Press, New York.

    Google Scholar 

  • Stearns, S.C. 1989. The evolutionary significance of phenotypic plasticity. Bioscience 39:436–444.

    Article  Google Scholar 

  • Stephens, D.W. 1987. On economically tracking a variable environment. Theor. Popul. Biol. 32:15–25.

    Article  Google Scholar 

  • Stephens, D.W. 1989. Variance and the value of information. Am. Nat. 134:128–140.

    Article  Google Scholar 

  • Stephens, D.W. 1991. Change, regularity and value in the evolution of animal learning. Behay. Ecol. 2:77–89.

    Article  Google Scholar 

  • Stephens, D.W., and Krebs, J.R. 1986. Foraging Theory. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Tamm, S 1987. Tracking varying environments: sampling by hummingbirds. Anim. Behay. 35:1725–1734.

    Article  Google Scholar 

  • Thorpe, W.H. 1963. Learning and Instinct in Animals. Methuen, London.

    Google Scholar 

  • Via, S., and Lande R. 1985. Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution 39:505–522.

    Article  Google Scholar 

  • West-Eberhard, M.J. 1989. Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Syst. 20:249–278.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stephens, D.W. (1993). Learning and Behavioral Ecology: Incomplete Information and Environmental Predictability. In: Papaj, D.R., Lewis, A.C. (eds) Insect Learning. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2814-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2814-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6216-6

  • Online ISBN: 978-1-4615-2814-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics