Advertisement

Resonance Effects in Oscillations of Nonuniform Flows of Continuous Media

Chapter
Part of the Reviews of Plasma Physics book series (ROPP, volume 17)

Abstract

Resonant interaction of oscillations with nonuniform media, induced by local equality of the flow rate with the component of the oscillation phase velocity along the flow direction, is analyzed. It is shown that the main laws governing the oscillatory properties and the stability of nonuniform flows of continuous media can be treated in a simple and natural manner in terms of the general theory of resonant interaction. Analogies that point to a common nature of the mechanisms of resonant interactions in different media are tracked.

Keywords

Velocity Profile Gravitational Wave Resonance Effect Natural Oscillation Resonant Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. C. Lin, Theory of Hydrodynamic Stability ,Cambridge Univ. Press (1955).zbMATHGoogle Scholar
  2. 2.
    H. Schlichting, Onset of Turbulence [Russian translation], IL, Moscow (1962).Google Scholar
  3. 3.
    Hydrodynamic Instability G. Birkhoff, R. Bellman, and C. C. Lin (eds.) [Russian translation], Mir (1964).zbMATHGoogle Scholar
  4. 4.
    A. S. Monin and A M. Yaglom, Statistical Hydromechanics [in Russian], Nauka, Moscow (1965), Part 1.Google Scholar
  5. 5.
    R. Betchov and V. Criminate, Problems of Hydrodynamic Instability [Russian translation], Mir, Moscow (1971).Google Scholar
  6. 6.
    E. Gossard and W. Hooke, Waves in the Atmosphere [Russian translation], Mir, Moscow (1975).Google Scholar
  7. 7.
    M. A Goldshtik and V. N. Shtern, Hydrodynamic Instability and Turbulence [in Russian], Nauka, Novosibirsk (1977).Google Scholar
  8. 8.
    L. A. Dikii, Hydrodynamic Stability and Dynamics of the Atmosphere [in Russian], Gidrometeoizdat, Leningrad (1976).Google Scholar
  9. 9.
    V. L. Polyachenko and A. M. Fridman, Equilibrium and Stability of Gravitating Systems [in Russian], Nauka, Moscow (1976).Google Scholar
  10. 10.
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability ,Clarendon Press, Oxford (1961).zbMATHGoogle Scholar
  11. 11.
    R. Davidson, Theory of Charged Plasma [Russian translation], Mir, Moscow (1978).Google Scholar
  12. 12.
    A. A. Vlasov, Many-Particle Theory [in Russian], Gostekhizdat, Moscow (1950).Google Scholar
  13. 13.
    A. V. Timofeev, in: Reviews of Plasma Theory ,B. B. Kadomtsev (ed.), Consultants Bureau, New York, Vol. 14.Google Scholar
  14. 14.
    D. Bohm, General Theory of Collective Variables [Russian translation], Mir, Moscow (1964).Google Scholar
  15. 15.
    L. D. Landau, Zh. Éksp. Teor. Fiz. ,16, 574–586 (1946).Google Scholar
  16. 16.
    A. V. Timofeev, IAE Preprint No. 1570, Moscow (1968).Google Scholar
  17. 17.
    A. V. Timofeev, Usp. Fiz. Nauk ,102, 185–210 (1970).Google Scholar
  18. 18.
    A A. Andronov and A L. Fabrikant, Nonlinear Waves ,A V. Gaponov-Grekhov (ed.), Nauka, Moscow (1980). pp. 69–104.Google Scholar
  19. 19.
    A V. Timofeev, Review of Plasma Physics ,M. A Leontovich (ed.), Vol. 9, Consultants Bureau (1986).Google Scholar
  20. 20.
    Rayleigh (J. W. Strutt), Scientific Papers, Cambridge Univ. Press, 1980, Vol. 1, pp. 474–484.Google Scholar
  21. 21.
    W. Wasow, Ann. Math. ,49, 851–852 (1948).MathSciNetCrossRefGoogle Scholar
  22. 22.
    E. M. Barston, Ann. Phys. ,29, 282–303 (1964).MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    C. Uberoi, Phys. Fluids ,15,1673–1675 (1972).ADSCrossRefGoogle Scholar
  24. 24.
    J. Heading, Introduction to Phase-Integral Methods ,Methuen (1962).zbMATHGoogle Scholar
  25. 25.
    G. M. Zaslavskii, V. P. Meitlis, and N. N. Filonenko, Wave Interaction in Inhomogeneous Media [in Russian], Nauka, Novosibirsk (1982).Google Scholar
  26. 26.
    A Erdelyi (ed.), Higher Transcendental Functions ,McGraw (1953).Google Scholar
  27. 27.
    K. G. Budden, Radio Waves in Ionosphere ,Cambridge Univ. Press (1961).zbMATHGoogle Scholar
  28. 28.
    V. L. Ginzburg, Propagation of Electromagnetic Waves in Plasma ,Pergamon (1964).Google Scholar
  29. 29.
    A V. Timofeev, Zh. Tekh. Fiz. ,38, 14–23 (1968).Google Scholar
  30. 30.
    M. N. Rosenbluth and A Simon, Phys. Fluids ,7, 557–558 (1964).ADSzbMATHCrossRefGoogle Scholar
  31. 31.
    A V. Timofeev, Fiz. Plazmy ,5, 705–706 (1979).Google Scholar
  32. 32.
    A B. Mikhailovskii, Theory of Plasma Instabilities [in Russian], Atomizdat, Moscow (1977), Vol. 2.Google Scholar
  33. 33.
    N. B. Andreev, A. Yu. Kirii, M. A. Pavlichenko, and V. V. Frolov, Fiz. Plazmy ,3,1273–1283 (1977).Google Scholar
  34. 34.
    D. J. Benney and R. F. Bergeron, Stud Appl. Math. ,48, 187–204 (1969).Google Scholar
  35. 35.
    R. E. Davis, Fluid Mech. ,36, 337–346 (1969).ADSzbMATHCrossRefGoogle Scholar
  36. 36.
    R. Haberman, Stud Appl. Math. ,51,139–161 (1972).zbMATHGoogle Scholar
  37. 37.
    J. L. Robinson, J. Fluid Mech. ,63, 723–752 (1974).ADSzbMATHCrossRefGoogle Scholar
  38. 38.
    V. P. Reutov, Probl. Mat. Teor. Fiz. ,No. 4, 43–54 (1982).MathSciNetGoogle Scholar
  39. 39.
    B. B. Kadomtsev, Collective Phenomena in Plasma [in Russian], Nauka, Moscow (1976).Google Scholar
  40. 40.
    A. V. Timofeev, Fiz. Plazmy ,10, 884–886 (1984).Google Scholar
  41. 41.
    N. G. Van Kampen, Physica ,21, 949 (1955).MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    V. I. Karpman, Zh. Éksp. Teor. Fiz. ,51, 907–914 (1966).Google Scholar
  43. 43.
    K. M. Case, Phys. Fluids ,3, 143–149 (1960).MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    L. A. Dikii, Dokl. Akad. Nauk SSSR ,135,1068–1071 (1961).MathSciNetGoogle Scholar
  45. 45.
    V. M. Kostin and A. V. Timofeev, Zh. Éksp. Teor. Fiz. ,53, 1378–1387 (1967).Google Scholar
  46. 46.
    V. I. Petviashvili, Dokl. Akad. Nauk SSSR ,237, 787–789 (1977).Google Scholar
  47. 47.
    T. B. Benjamin, Fluid Mech. ,2, 554–574 (1957).MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    C. S. Yih, Phys. Fluids ,6, 321–334 (1963).ADSzbMATHCrossRefGoogle Scholar
  49. 49.
    J. W. Miles, ibid ,3, 185–204 (1957).MathSciNetzbMATHGoogle Scholar
  50. 50.
    P. I. Kolykhalov, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza ,No. 2, 10–16 (1985).Google Scholar
  51. 51.
    M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions ,Dover (1964).zbMATHGoogle Scholar
  52. 52.
    L. D. Landau and E. M. Lifshitz, Hydromechanics ,Pergamon (1989).Google Scholar
  53. 53.
    B. B. Kadomtsev, A. A. Mikhailovskii, and A. V. Timofeev, Zh. Éksp. Teor. Fiz. ,47, 2206–2268 (1964).Google Scholar
  54. 54.
    W. Blumen, P. G. Drazin, and D. F. Billings, J. Fluid Mech. ,71,305–316 (1975).ADSzbMATHCrossRefGoogle Scholar
  55. 55.
    P. G. Drazin and A. Davey, ibid ,82, 255–260 (1977).ADSzbMATHGoogle Scholar
  56. 56.
    A. V. Timofeev, Plasma Phys. ,10, 235–248 (1968).ADSCrossRefGoogle Scholar
  57. 57.
    V. A. Ditkin and A. P. Prudnikov, Handbook of Operational Calculus [in Russian], Vysshaya Shkola, Moscow (1965).Google Scholar
  58. 58.
    R. H. Levy, Phys. Fluids ,8, 1288–1294 (1965).MathSciNetADSCrossRefGoogle Scholar
  59. 59.
    W. Knauer, J. Appl. Phys. ,37, 602–611 (1966).ADSCrossRefGoogle Scholar
  60. 60.
    G. F. Bogdanov, I. N. Golovin, Yu. A. Kucheryaev, and D. A. Panov, Nuclear Fusion ,Appendix, Vol. 1, pp. 215–225 (1962).Google Scholar
  61. 61.
    C. C. Damm, J. H. Foote, A. H. Futch, et al., Phys. Fluids ,8,1472–1487 (1965).ADSCrossRefGoogle Scholar
  62. 62.
    B. B. Kadomtsev, Nucl. Fusion ,1, 296–308 (1961).CrossRefGoogle Scholar
  63. 63.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Nonrelativistic Theory ,Pergamon (1977).Google Scholar
  64. 64.
    S. V. Putvinskii, Nucl. Fusion ,15, 723–727 (19754).CrossRefGoogle Scholar
  65. 65.
    B. N. Breizman and F. A. Tsel’nik, Fiz. Plazmy ,11, 776–781 (1985).Google Scholar
  66. 66.
    C. F. Abdrashitov, S. F. Bajborodin, A. A. Bekhtenev, V. I. Volosov, et al., Plasma Phys. Nucl. Phys. Research ,Vienna, IAEA, Vol. 1, 539–548 (1981).Google Scholar
  67. 67.
    A. A. Bekhtenev and V. I. Volosov, Zh. Éksp. Teor. Fiz. ,47,1450–1460 (1977). Preprint IYaF 75–74, Novosibirsk, Inst. Nucl. Phys., Siberian Div. USSR Acad. Sci., 1975.Google Scholar
  68. 68.
    S. I. Braginskii, in: Reviews of Plasma Physics ,M. A. Leontovich (ed.), Consultants Bureau, Vol. 1 (1963).Google Scholar
  69. 69.
    M. N. Rosenbluth, N. A. Krall, and N. Rostoker, Nucl. Fusion ,Suppl. Vol. 1, 143–150 (1962).Google Scholar
  70. 70.
    A V. Timofeev, Nucl. Fusion ,6, 93–100 (1966).CrossRefGoogle Scholar
  71. 71.
    A. V. Timofeev, ibid ,8, 99–107.Google Scholar
  72. 72.
    M. N. Rosenbluth and A Simon, Phys. Fluids ,8,1300–1322 (1965).MathSciNetADSCrossRefGoogle Scholar
  73. 73.
    V. G. Gavrilenko and L. A. Zelenov, Fiz. Plazmy ,6, 1046–1049 (1980).Google Scholar
  74. 74.
    E. G. Harrison, Proc. Phys. Soc, B82, 689– 699 (1963).CrossRefGoogle Scholar
  75. 75.
    V. G. Gavrilenko and L. A Zeleksov, Fiz. Plazmy ,5, 849–859 (1979).Google Scholar
  76. 76.
    J. Zhelyazkov and A A. Rukhadze, Plasma Phys. ,14,167–188 (1972).ADSCrossRefGoogle Scholar
  77. 77.
    A V. Timofeev, in: Reviews of Plasma Physics ,M. A Leontovich (ed.), Consultants Bureau, New York, Vol. 9 (1986).Google Scholar
  78. 78.
    A V. Timofeev, Fiz. Plazmy ,2, 510–512 (1976).Google Scholar
  79. 79.
    A V. Timofeev, V. P. Meitans, and G. N. Chulkov, ibid. ,4,1078–1087 (1978).Google Scholar
  80. 80.
    Plasma Electrodynamics [in Russian], A. I. Akhiezer (ed.), Nauka, Moscow (1974).Google Scholar
  81. 81.
    V. A Mazur, A B. Mikhailovskii, A L. FrenkeF, and I. G. Shukhman, in: Reviews of Plasma Physics ,M. A Leontovich (ed.), Consultants Bureau, New York, Vol. 9 (1986).Google Scholar
  82. 82.
    M. N. Rosenbluth and P. H. Rutherford, Phys. Rev. Lett. ,34,1428–1431 (1975).ADSCrossRefGoogle Scholar
  83. 83.
    V. M. Patudin and A M. Sagalakov, Ft. Plazmy ,9, 512–522 (1983).Google Scholar
  84. 84.
    V. M. Patudin and A M. Sagalakov, ibid ,11, 211–220 (1985).Google Scholar
  85. 85.
    V. M. Patudin and A M. Sagalakov, in: Stability and Turbulence [in Russian], M. A Gol’dshtik and V. M. Shtern (eds.), IT SO AN SSSR, Novosibirsk (1985), pp. 61–70.Google Scholar
  86. 86.
    P. M. Blekher, Fiz. Plazmy ,11, 439–445 (1985).Google Scholar
  87. 87.
    A Erdelyi (ed.), Higher Transcendental Functions ,McGraw-Hill, New York (1953).Google Scholar

Copyright information

© Consultants Bureau, New York 1992

Authors and Affiliations

There are no affiliations available

Personalised recommendations