Skip to main content

Use of Wavelets for Numerical Solution of Differential Equations

  • Chapter
Wavelet Applications in Chemical Engineering

Part of the book series: The Kluwer International Series in Engineering and Computer Science ((SECS,volume 272))

Abstract

In contrast to the traditional trigonometric basis functions which have infinite support, wavelets may have compact support, thus being able to approximate a functions not by cancellation, but through placement of the right wavelets at appropriate locations. The multi-resolution analysis (MRA) properties of wavelets render them attractive candidates for functions in terms of which numerical solutions of differential equations can be represented. In particular, Mallat’s MRA algorithm applied on orthonormal or semi-orthogonal wavelets can be used to generate adaptive grid methods. In this work, two classes of compactly supported wavelets, namely, Daubechies’ orthonormal wavelet bases and Chui-Wang’s semi-orthogonal B-spline wavelets, are used with the method of weighted residuals for numerical solution of differential equations. A variation relying on Laplace transform is also examined. Based on the MRA properties of wavelet bases, two-scale multi-level methods are proposed, which generate higher level approximate wavelet solutions from the results of lower level calculations. Adaptive grid refinement can be applied only to regions where the residual at lower level is relatively large. The proposed methods may be advantageous when solutions exhibit abrupt changes. Several numerical examples based on these methods are given. Comparisons with traditional methods for numerical solution of differential equations are made and directions for further development are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alpert, B., “Wavelets and Other Bases for Fast Numerical Algebra,” Wavelets: A Tutorial in Theory and Applications, C. K. Chui, ed., 181–216, Academic Press, San Diego, CA (1992).

    Google Scholar 

  • Andersson, L., N. Hall, B. Jawerth, and G. Peters, “Wavelets on Closed Subsets of the Real Line,” to appear in Topics in the Theory and Applications of Wavelets, L. L. Schumaker and G. Webb, eds., Academic Press, Boston, MA (1993).

    Google Scholar 

  • Auscher, P., “Wavelets with Boundary Conditions on the Interval,” Wavelets: A Tutorial in Theory and Applications, C. K. Chui, ed., 217–236, Academic Press, San Diego, CA (1992).

    Google Scholar 

  • Beylkin, G., “On Wavelet-Based Algorithms for Solving Differential Equations,”Wavelets: Mathematics and Applications.

    Google Scholar 

  • J. J. Benedetto and M. Frazier, eds., Chap. 12, CRC Press, Boca Raton, FL(1993).

    Google Scholar 

  • Beylkin, G., R. Coifman, and V. Rokhlin, “Fast Wavelet Transforms and Numerical Algorithms I,” Comm. Pure Appl. Math., 44(2), 141–183 (1991).

    Article  Google Scholar 

  • de Boor, C., A Practical Guide to Splines, Springer-Verlag, New York, NY (1978).

    Book  Google Scholar 

  • de Boor, C., R. A. DeVore, and A. Ron, “On the Construction of Multivariate (Pre)wavelets,” Constr. Approx., 9(2–3), 123–166 (1993).

    Article  Google Scholar 

  • Briggs, W. L. and V. E. Henson, “Wavelets and Multigrid,” SIAM J. Scz. Comput., 14(2), 506–510 (1993).

    Article  Google Scholar 

  • Celia, M.A. and W. G. Gray, Numerical Methods for Differential Equations, Prentice Hall, Englewood Cliffs, NJ (1992).

    Google Scholar 

  • Chui, C. K., An Introduction to Wavelets, Academic Press, Boston, MA (1992).

    Google Scholar 

  • Chui, C. K. and E. Quak, “Wavelets on a Bounded Interval,” Numerical Methods of Approximation Theory, D. Braess and L. L. Schumaker, eds., Vol. 9, 53–75, Birkhäuser Verlag, Basel (1992).

    Google Scholar 

  • Chui, C. K. and J.Z. Wang, “A Cardinal Spline Approach to Wavelets,” Proc. Amer. Math. Soc., 113(3), 785–793 (1991).

    Article  Google Scholar 

  • Chui, C. K. and J.-Z. Wang, “A General Framework of Compactly Supported Splines and Wavelets,” J. Appr. Theory, 71(3), 263–304 (1992a).

    Article  Google Scholar 

  • Chui, C. K. and J.-Z. Wang, “On Compactly Supported Spline Wavelets and A Duality Principle,” Trans. Amer. Math. Soc., 330(2), 903–915 (1992b).

    Article  Google Scholar 

  • Chui, C. K. and J.-Z. Wang, “An Analysis of Cardinal Spline-Wavelets,” J. Appr. Theory, 72(1), 54–68 (1993).

    Article  Google Scholar 

  • Cohen, A., “Biorthogonal Wavelets,” Wavelets: A Tutorial in Theory and Applications, C. K. Chui, ed., 123–152, Academic Press, San Diego, CA (1992).

    Google Scholar 

  • Cohen, A. and I. Daubechies, “Orthonormal Bases of Compactly Supported Wavelets III. Better Frequency Resolution,” SIAM J. Math. Anal., 24(2), 520–527 (1993).

    Article  Google Scholar 

  • Cohen, A., I. Daubechies, and J. C. Feauveau, “Biorthogonal Bases of Compactly Supported Wavelets,” Comm. Pure Appl. Math., XLV(6), 485–560 (1992).

    Article  Google Scholar 

  • Cohen, A. and J.-M. Schlenker, “Compactly Supported Bidimensional Wavelet Bases with Hexagonal Symmetry,” Constr. Approx., 9(2–3), 209–236 (1993).

    Article  Google Scholar 

  • Coifman, R. R. and Y. Meyer, “Orthonormal Wavelet Packet Bases,” preprint, Yale University, New Haven, CT (1990).

    Google Scholar 

  • Dahlquist, G. and A. Bjorck, Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ (1974).

    Google Scholar 

  • Dahlke, S. and I. Weinreich, “Wavelet-Galerkin Methods: An Adapted Biorthogonal Wavelet Basis,” Constr. Approx., 9(2–3), 237–262 (1993).

    Article  Google Scholar 

  • Dahmen, W. and C. A. Micchelli, “Using the Refinement Equation for Evaluating Integrals of Wavelets,” SIAM J. Math. Anal., 30(2), 507–537 (1993).

    Google Scholar 

  • Daubechies, I., “Orthonormal Bases of Compactly Supported Wavelets,” Comm. Pure Appl. Math., 41(7), 909–996 (1988).

    Article  Google Scholar 

  • Daubechies, I., “Orthonormal Bases of Compactly Supported Wavelets II. Variations on a Theme,” SIAM J. Math. Anal., 24(2), 499–519 (1993).

    Article  Google Scholar 

  • Daubechies, I., Ten Lectures on Wavelets, CBMS-NFS Series in Applied Mathematics, SIAM, Philadelphia, PA (1992).

    Chapter  Google Scholar 

  • Daubechies, I. and J. C. Lagarias, “Two-Scale Difference Equations II. Local Regularity, Infinite Products of Matrices and Fractals,” SIAM J. Math Anal., 23(4), 1031–1079 (1992).

    Article  Google Scholar 

  • Farge, M., “Wavelet Transforms and Their Applications to Turbulence,” Annu. Rev. Fluid Mech., 24, 395–457 (1992).

    Article  Google Scholar 

  • Finlayson, B. A., The Method of Weighted Residuals and Variational Principles with Application in Fluid Mechanics,Heal and Mass Transfer, Academic Press, New York, NY (1972).

    Google Scholar 

  • Fletcher, C. A. J., “Burgers’ Equation: A Model for All Reasons,” Numerical Solutions of Partial Differential Equations, J. Noye, ed., North-Holland, New York, NY (1982).

    Google Scholar 

  • Fletcher, C. A. J., Computational Galerkin Methods, Springer-Verlag, New York, NY (1984).

    Book  Google Scholar 

  • Glowinski, R., W. Lawton, M. Ravachol, and E. Tenenbaum, “Wavelet Solutions of Linear and Nonlinear Elliptic, Parabolic, and Hyperbolic Problems in One Space Dimension,” Computing Methods in Applied Sciences and Engineering, Chap. 4, R. Glowinski and A. Lichnewsky, eds., 55–120, SIAM, Philadelphia, PA (1990).

    Google Scholar 

  • Gottlieb, D. and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, SIAM, Philadelphia, PA (1977).

    Book  Google Scholar 

  • Haar, A., “Zur Theorie der Orthogonalen Funkktionen-Systeme,” Math. Ann., 69, 331–371 (1910).

    Article  Google Scholar 

  • Jaffard, S., “Wavelet Methods for Fast Resolution of Elliptic Problems,” SIAM J. Numer. Anal., 29(4), 965–986 (1992).

    Article  Google Scholar 

  • Jawerth, B. and W. Sweldens, “An Overview of Wavelet Based Multiresolution Analysis,” submitted to SIAM Review (1993).

    Google Scholar 

  • Jawerth, B. and W. Sweldens, “Wavelet Multiresolution Analysis Adapted for the Fast Solution of Boundary Value Ordinary Differential Equations,” to appear in Proceedings of the Six Copper Maintain Multigrid Conference (April 1993).

    Google Scholar 

  • Lapidus, L. and G. F. Pinder, Numerical Solutions of Partial Differential Equations in Science and Engineering, John Wiley & Sons, New York, NY (1982).

    Google Scholar 

  • Latto, A., H. L. Resnikoff, and E. Tenenbaum, “The Evaluation of Connection Coefficients of Compactly Supported Wavelets,” Proc. French- USA Workshop on Wavelets and Turbulence, Y. Maday, ed., Springer-Verlag, New York, NY (1992).

    Google Scholar 

  • Lemarié, P. G., “Ondelettes à Localisation Exponentielles,” J. de Math. Pures et Appl., 67, 227–236 (1988).

    Google Scholar 

  • Liandrat, J., V. Perrier, Ph. Tchamitchian, “Numerical Resolution of Nonlinear Partial Differential Equations Using the Wavelet Approach,” Wavelets and Applications, M. B. Ruskai, G. Beylkin, R. Coifman, I. Daubechies, S. Mallat, Y. Meyer, and L. Raphael, eds., 227–238, Jones and Bartlett, Boston, MA (1992).

    Google Scholar 

  • Lorentz, R.A. and W. Madych, “Spline Wavelets for Ordinary Differential Equations,” preprint, GMD, St. Augustin (1990).

    Google Scholar 

  • Mallat, S., “A Theory of Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Trans. Pattern Anal. Machine Intell., 11(7), 674–693 (1989).

    Article  Google Scholar 

  • Meyer, Y., Ondelettes et Fonctions Splines, Séminaire EDP, École Polytechnique, Paris (1986).

    Google Scholar 

  • Meyer, Y., “Ondelettes sur l’intervalle,” Rev. Mat. Iberoamericana, 7, 115–143, 1991).

    Article  Google Scholar 

  • Meyer, Y., “Wavelets and Operators,” Analysis at Urbana I: Analysis in Function Spaces, E. Berkson, T. Peck, J. Uhl, ed., 256–365, Cambridge University Press, Cambridge (1989).

    Google Scholar 

  • Moridis, G. J. and M. Nikolaou, “The Laplace Transform Wavelet (LTW) Method for the Solution of the Equations of Flow and Transport Through Porous Media,” EOS Trans. AGU, 74(43), 307 (1993).

    Google Scholar 

  • Moridis, G. J. and D. L. Reddell, “The Laplace Transform Finite Difference (LTFD) Numerical Method for Groundwater Simulations,” EOS Trans. of AGU, 71(17), 123–129 (1990).

    Google Scholar 

  • Moridis, G. J. and D. L. Reddell, “The Laplace Transform Finite Element (LTFE) Numerical Method for the Solution of Groundwater Equation Groundwater Simulations,” EOS Trans. of AGU, 72(17), 123–129 (1991).

    Google Scholar 

  • Moridis, G. J. and E. Kansa, “The Method of Laplace Transform Multiquadrics (LTMQ) for the Solution of the Groundwater Flow Equation,” Proc. 7th IMACS Int. Conf. on Computer Methods for PDEs, New Brunswick, NJ (June, 1993)

    Google Scholar 

  • Qian, S. and J. Weiss, “avelets and the Numerical Solution of Boundary Value Problems,” Appl. Math. Lett., 6(1), 47–52 (1993).

    Article  Google Scholar 

  • Qian, S. and J. Weiss, “Wavelets and the Numerical Solution of Partial Differential Equations,” submitted to J. Comp. Phys. (1992).

    Google Scholar 

  • Riemenschneider, S. D. and Z. Shen, “Wavelets and Pre-Wavelets in Low Dimensions,” J. Approx. Theory, 71(1), 18–38 (1992).

    Article  Google Scholar 

  • Schoenberg, I. J., Cardinal Spline Interpolation, CBMS-NSF Series in Applied Mathematics, SIAM, Philadelphia, PA (1973).

    Book  Google Scholar 

  • Stehfest, H., “Numerical Inversion of Laplace Transforms,” Comm. of the ACM, 17(1),7–49 (1970a).

    Article  Google Scholar 

  • Stehfest, H., “Numerical Inversion of Laplace Transforms,” Comm. of the ACM, 17(10), 56 (1970b).

    Google Scholar 

  • Strang, G., “Wavelets and Dilation Equations: A Brief Introduction,” SIAM Review, 31(4), 614–627 (1990).

    Article  Google Scholar 

  • Stöckler, J., “Multivariate Wavelets,” Wavelets: A Tutorial in Theory and Applications, C. K. Chui, ed., 325–355, Academic Press, San Diego, CA (1992).

    Google Scholar 

  • Strömberg, J. O., “A Modified Franklin System and Higher-Order Spline Systems on Rn as Unconditional Basis for Hardy Spaces,” Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. II, W. Bechener, A. P. Calderón, R. Fefferman, and P. W. Jones, eds., 466–494, Wadsworth International, Belmont, CA (1981).

    Google Scholar 

  • Sweldens, W. and R. Piessens, “Asymptotic Error Expansion for Wavelet Approximations of Smooth Functions,” preprint (1992).

    Google Scholar 

  • Sweldens, W. and R. Piessens, “Asymptotic Error Expansion for Wavelet Approximations of Smooth Functions II: Generalizations,” preprint (1993).

    Google Scholar 

  • Sweldens, W. and R. Piessens, “Quadratic Formula for the Calculation of the Wavelet Decomposition,” preprint (1992).

    Google Scholar 

  • Weiss, J., “Wavelets and the Study of Two Dimensional Turbulence,” Proc. French-USA Workshop on Wavelets and Turbulence, Y. Maday, ed., Springer-Verlag, New York, NY (1992).

    Google Scholar 

  • Xu, J.-C. and W.-C. Shann, “Galerkin-Wavelet Methods for Two-Point Boundary Value Problems,” Numer. Math., 63(1), 123–142 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nikolaou, M., You, Y. (1994). Use of Wavelets for Numerical Solution of Differential Equations. In: Motard, R.L., Joseph, B. (eds) Wavelet Applications in Chemical Engineering. The Kluwer International Series in Engineering and Computer Science, vol 272. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2708-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2708-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-9461-7

  • Online ISBN: 978-1-4615-2708-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics