Skip to main content

Abstract

A battery is a device that converts the chemical energy contained in its active materials directly into electrical energy by means of an electrochemical oxidation-reduction reaction, also called redox reaction. This type of reaction involves the transfer of electrons from one material to another through an internal circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for chapter 1

  1. A. Volta, Phil. Trans. R. Soc., 90 (1800) 403.

    Article  Google Scholar 

  2. G. Planté, C.R. Acad. Sci. (Paris), 50 (1860) 640.

    Google Scholar 

  3. The first Leclanché cell consisted of an amalgamated zinc bar serving as the negative electrode, a solution of ammonium chloride as electrolyte, and a one-to-one mixture of manganese dioxide and powdered carbon packed around a carbon rod as the positive electrode.

    Google Scholar 

  4. J. Jensen, Energy Storage, Butterworths Co. Publ. Ltd., London, 1980.

    Google Scholar 

  5. B.B. Owens, J.E. Oxley and A.F. Sammells, Topics Appl. Phys., 21 (1977) 67.

    Article  CAS  Google Scholar 

  6. D. Shahi, J.B. Wagner and B.B. Owens, in: J.P. Gabano (Ed.), Lithium Batteries, Academic Press, New York, 1983, p. 407.

    Google Scholar 

  7. J.R. Akridge and H. Vourlis, Solid State Ionics, 18-19 (1986) 1082.

    Article  CAS  Google Scholar 

  8. M. Armand, in: P. Vashishta, J.N. Mundy and G.K. Shenoy (Eds.), Fast Ion Transport in Solids, North-Holland, Amsterdam, 1979, p.131.

    Google Scholar 

  9. C. Julien and M. Balkanski, in: J.R. Akridge and M. Balkanski (Eds), Micro-Solid-State Batteries, NATO-ASI Series, Ser.B217, Plenum, New York, 1990, p.233.

    Chapter  Google Scholar 

  10. J.H. Kennedy, Thin Solid Films, 43 (1977) 41

    Article  CAS  Google Scholar 

  11. C. Julien, Mater. Sci. Eng. B, 6 (1990) 9.

    Article  Google Scholar 

  12. M. Crouzet, P. Schnell, G. Velasco and J. Siejka, J. Appl. Phys., 48 (1977) 775.

    Article  Google Scholar 

  13. M. Crouzet, P. Schnell, G. Velasco and J. Siejka, J. Vac. Sci. Technol., 14 (1977) 777.

    Article  Google Scholar 

  14. P. Schnell, G. Velasco and P. Colomban, Solid State Ionics, 5 (1981) 291.

    Article  CAS  Google Scholar 

  15. J.H. Kennedy and F. Chen, J. Electrochem. Soc., 118 (1971) 1043.

    Article  CAS  Google Scholar 

  16. For a complete review, see: D. Linden (Ed.), Handbook of Batteries and Fuel Cells, McGraw-Hill, New York, 1984.

    Google Scholar 

  17. C.A. Vincent, B. Scrosati, F. Lazzari and F. Bonino, Modern Batteries, Edward Arnold Publ., London (1984).

    Google Scholar 

  18. C. Mantell, Batteries and Energy Systems, McGraw-Hill, New York, 1970.

    Google Scholar 

  19. S.M. Caulder and A.C. Simon, in: D.W. Murphy, J. Broadhead and B.C.H. Steele (Eds.), Materials for Advanced Batteries, Plenum Press, New York, 1980, p. 199.

    Chapter  Google Scholar 

  20. P. Ruetschi, J. Power Sources, 2 (1977/78) 3.

    Article  CAS  Google Scholar 

  21. S.U. Falk, in: D. Linden (Ed.), Handbook of Batteries and Fuel Cells, McGraw-Hill, New York, 1984, p. 16-1.

    Google Scholar 

  22. R.M. Dell, in: C.A.C. Sequeira and A. Hooper (Eds.), Solid State Batteries, NATO-ASI Series, Ser. E101, Martinus Nijhoff Publ., Dordrecht, 1985, p. 319.

    Chapter  Google Scholar 

  23. The first Na/S battery was realized at the Ford Motor Co., at Dearborn. For a review, for example, see: J.A. Asher, in: P. Vashishta, J.N. Mundy and G.K. Shenoy (Eds.), Fast Ion Transport in Solids, North-Holland, Amsterdam, 1979, p.39.

    Google Scholar 

  24. T. Nagaura, Paper presented at the 4th International Rechargeable Battery Seminar, Deerfield Beach, FL, 1990.

    Google Scholar 

  25. J.R. Dahn, U. von Saken and R. Fong, J. Electrochem. Soc., 137 (1990) 369C.

    Article  Google Scholar 

  26. Y. Nishi, H. Azuma and A. Omura, U.S. Patent. 4,959,281 (1990).

    Google Scholar 

  27. M.S. Whittingham, Science, 192 (1976) 1126.

    Article  CAS  Google Scholar 

  28. M. Armand, in: D.W. Murphy, J. Broadhead and B.C.H. Steele (Eds.), Materials for Advanced Batteries, Plenum Press, New York, 1980, p. 145.

    Chapter  Google Scholar 

  29. W.R. McKinnon and R.R. Haering, in: R.E. White, J. O’M. Bockris and B.E. Conway (Eds.), Modem Aspects of Electrochemistry, vol. 15, Plenum Publ., New York, 1983, p. 235.

    Chapter  Google Scholar 

  30. S. Atlung, in: C.A.C. Sequeira and A. Hooper (Eds.), Solid State Batteries, NATO-ASI Series, Ser. E101, Martinus Nijhoff Publ., Dordrecht, 1985, p. 129.

    Chapter  Google Scholar 

  31. J. Rouxel, in: A.P. Legrand and S. Flandrois (Eds.), Chemical Physics of Intercalation, NATO-ASI-Series, Ser. B 172, Plenum Press, New York, 1987, p. 127.

    Google Scholar 

  32. M.S. Whittingham, J. Electrochem. Soc., 123 (1976) 1126.

    Article  Google Scholar 

  33. M.S. Whittingham, Prog. Solid St. Chem., 12 (1978) 41.

    Article  CAS  Google Scholar 

  34. B.C.H Steele, in: W. Van Gool (Ed.), Fast Ion Transport in Solids, North-Holland, Amsterdam, 1973, p. 103.

    Google Scholar 

  35. L. Heyne, in: W. Van Gool (Ed.), Fast Ion Transport in Solids, North-Holland, Amsterdam, 1973, p. 123.

    Google Scholar 

  36. D.W. Murphy and P.A. Christian, Science, 205 (1979) 651.

    Article  CAS  Google Scholar 

  37. A.H. Thompson, J. Electrochem Soc., 126 (1979) 608.

    Article  CAS  Google Scholar 

  38. A.J. Berlinsky, W.G. Unruh, W.R. McKinnon, and R.R. Haering, Solid State Commun., 31 (1979) 135.

    Article  CAS  Google Scholar 

  39. F. Dalard, D. Deroo, A. Sellani, R. Manger and J. Mercier, Solid State Ionics, 7 (1982) 17.

    Article  CAS  Google Scholar 

  40. A.S. Nagelberg and W.L. Worrell, J. Solid State Chem., 29 (1979) 345.

    Article  CAS  Google Scholar 

  41. S.E. Millman and G. Kirczenow, Phys. Rev. B, 28 (1983) 3482.

    Article  CAS  Google Scholar 

  42. R. Osorio and L.M. Falicov, J. Phys. Chem.Solids, 43 (1982) 73.

    Article  CAS  Google Scholar 

  43. M.B. Armand, PhD dissertation, University of Grenoble (1978).

    Google Scholar 

  44. D.A. Winn, J.M. Shemilt and B.C.H. Steele, Mat. Res. Bull. 11 (1976) 559.

    Article  CAS  Google Scholar 

  45. P.G. Dickens, S.J. French, A.T. Hight and M.F. Pye, Mate. Res. Bull., 14 (1979) 1295.

    Article  CAS  Google Scholar 

  46. M.A. Py and R.R. Haering, Can J. Phys., 61 (1983) 76

    Article  CAS  Google Scholar 

  47. A.H. Thompson, J.C. Scanlon and C.R. Symon, Solid State Ionics, 1 (1980) 47.

    Article  CAS  Google Scholar 

  48. S. Atlung, K. West and T. Jacobsen, in: D.W. Murphy, J. Broadhead and B.C.H. Steele (Eds.), Materials for Advanced Batteries, Plenum Press, New York, 1980, p. 275.

    Chapter  Google Scholar 

  49. T. Jacobson, K. West and S. Atlung, J. Electrochem. Soc., 126 (1979) 2169.

    Article  Google Scholar 

  50. S. Atlung, B. Zachau-Christiansen, K. West and T. Jacobsen, J. Electrochem. Soc., 131 (1984) 1200.

    Article  CAS  Google Scholar 

  51. K. West, S. Atlung and T. Jacobsen, J. Electrochem. Soc., 129 (1982) 2875.

    Article  CAS  Google Scholar 

  52. S. Atlung, T. Jacobsen, K. West and B. Zachau-Christiansen, in: W.D. Luz, and H.G. Müller (Eds.), Electrochemishe Verfaren, Dechema Monographien, 109 (1987) 333.

    Google Scholar 

  53. S. Basu and W.L. Worrell, in: P. Vashishta, J.N. Mundy and G.K. Shenoy (Eds.), Fast Ion Transport in Solids, North-Holland, Amsterdam, 1979, p. 149.

    Google Scholar 

  54. I. Samaras, S.I. Saikh, C. Julien and M. Balkanski, Mater. Sci. Eng. B, 3 (1989) 209.

    Article  Google Scholar 

  55. C. Delmas, A. Maazaz, C. Fouassier, J.M. Reau and P. Hagenmuller, Mat. Res. Bull., 14 (1979) 329.

    Article  CAS  Google Scholar 

  56. T.J. Hibma, J. Solid State Chem., 34 (1980) 97.

    Article  CAS  Google Scholar 

  57. T.J. Hibma, in: M.S. Whittingham and A.J. Jacobson (Eds.), Intercalation Chemistry, Academic Press, New York, 1982, p. 285.

    Google Scholar 

  58. H.A. Hallak and P.A. Lee, Solid State Commun., 47 (1983) 503.

    Article  CAS  Google Scholar 

  59. W.Y. Liang, in: M.S. Dresselhaus (Ed.), Intercalation in Layered Materials, NATO-ASI Series, Ser. B 148, Plenum Press, New York, 1986, p. 31.

    Google Scholar 

  60. A.H. Thompson and C.R. Symon, Solid State Ionics, 3-4 (1981) 175.

    Article  CAS  Google Scholar 

  61. W. Weppner and R.A. Huggins, J. Bectrochem. Soc., 124 (1977) 1569.

    Article  CAS  Google Scholar 

  62. A. Honders, E.W.A. Young, A.H. Van Heeren, J.H.W. de Wit and G.H.J. Broers, Solid State Ionics, 14 (1984) 205.

    Article  CAS  Google Scholar 

  63. A. Honders and G.H.J. Broers, Solid State Ionics, 15 (1985) 173.

    Article  CAS  Google Scholar 

  64. A. Honders, A.J.H. Hintzen, E.W.A. Young, J.H.W, de Wit and G.H.J. Broers, Solid State Ionics, 15 (1985) 1.

    Article  CAS  Google Scholar 

  65. A. Honders, J.M. der Kinderen, A.H. Van Heeren, J.H.W, de Wit and G.H.J. Broers, Solid State Ionics, 15 (1985) 265.

    Article  CAS  Google Scholar 

  66. A. Honders, E.W.A. Young, A.J.H. Hintzen, J.H.W, de Wit and G.H.J. Broers, Solid State Ionics, 15 (1985) 277.

    Article  CAS  Google Scholar 

  67. J. Crank, The Mathematics of Diffusion, Oxford Univ. Press, Oxford, 1967.

    Google Scholar 

  68. C. Julien, E. Hatzikraniotis and M. Balkanski, Mater. Letters, 4 (1986) 401.

    Article  CAS  Google Scholar 

  69. C. Julien and E. Hatzikraniotis, Mater. Letters, 5 (1987) 134.

    Article  CAS  Google Scholar 

  70. A.H. Thompson, Rev. Sci. Instrum., 54 (1983) 229.

    Article  CAS  Google Scholar 

  71. R.A. Huggins, in: P. Vashishta, J.N. Mundy and G.K. Shenoy (Eds.), Fast Ion Transport in Solids, North-Holland, Amsterdam, 1979, p. 53.

    Google Scholar 

  72. L. Balewski and J.P. Brunet, Bectrochem. Technol., 5 (1967) 527.

    CAS  Google Scholar 

  73. A.H. Thompson, Phys. Rev. Lett., 40 (1978) 1511.

    Article  CAS  Google Scholar 

  74. C.R.A. Clauss band H.E. Schweigart, J. Bectrochem. Soc, 123 (1976) 951.

    Article  Google Scholar 

  75. J.R. Dahn and W.R. McKinnon, J. Bectrochem. Soc, 131 (1984) 1823.

    Article  CAS  Google Scholar 

  76. S.T. Coleman, W.R. McKinnon and J.R. Dahn, Phys. Rev. B, 29 (1984) 4147.

    Article  CAS  Google Scholar 

  77. K. West, T. Jacobsen, B. Zachau-Christiansen and S. Atlung, Electrochim. Acta, 28 (1983) 97.

    Article  CAS  Google Scholar 

  78. J.R. Dahn and R.R. Haering, Solid State Ionics, 2 (1981) 19.

    Article  CAS  Google Scholar 

  79. B.E. Conway, J. Electrochem. Soc, 127 (1980) 1319.

    Article  CAS  Google Scholar 

  80. W.R. McKinnon and J.R. Dahn, Solid State Commun., 52 (1984) 245.

    Article  CAS  Google Scholar 

  81. W.R. McKinnon and J.R. Dahn, Phys. Rev. B, 31 (1985) 3084.

    Article  CAS  Google Scholar 

  82. C. Julien, I. Samaras and A. Chevy, Solid State Ionics, 36 (1989) 113.

    Article  CAS  Google Scholar 

  83. C. Julien, I. Samaras and G. Mouget, in: M. Balkanski (Ed.), Microionics, Solid-State Integrable Batteries, North-Holland, Amsterdam, 1991, p. 397.

    Google Scholar 

  84. 84 B.C.H. Steele, in: C.A.C. Sequeira and A. Hooper, Solid State Batteries, NATO-ASI Series, Ser. E 101, Martinus Nijhoff Publ., Dordrecht, 1985, p. 163.

    Chapter  Google Scholar 

  85. N.F. Mott and E.A. Davis, Electronic Processes in Non-Crystalline Materials, Clarendon Press, Oxford, 1971.

    Google Scholar 

  86. C. Julien and M. Balkanski, in: M. Balkanski (Ed.), Microionics-Solid-State Integrable Batteries, North-Holland, Amsterdam, 1991, p. 3.

    Google Scholar 

  87. S. Atlung and K. West, J. Power Sources, 26 (1989) 139.

    Article  CAS  Google Scholar 

  88. P.C. Klipstein, C.M. Pereira and R.H. Friend, in: J.V. Acrivos, N.F. Mott and A.D. Yoffe (Eds.), Physics and Chemistry of Electrons and Ions in Condensed Matter, NATO-ASI Series, Ser. C130, D. Reidel Publ., Dordrecht, 1984, p. 549.

    Chapter  Google Scholar 

  89. S.I. Saikh, PhD. Dissertation, Université Pierre et Marie Curie, Paris, 1989.

    Google Scholar 

  90. For example, see in the Series: Physics and Chemistry of Materials with Layered Structures, vol.4, P.A. Lee (Ed.), Optical and Electrical Properties, R. Reidel Publ., Dordrecht, 1976.

    Google Scholar 

  91. J.E. Fisher, in: F. Lévy (Ed.), Intercalated Layered Materials, vol. 6, R. Reidel Publ., Dordrecht, 1977, p. 481.

    Google Scholar 

  92. P. Blood and J.W. Orton, The Electrical Characterization of Semiconductors, Academic Press, London, 1992.

    Google Scholar 

  93. T.R. Jow and C.C. Liang, Solid State Ionics, 9-10 (1983) 695.

    Article  CAS  Google Scholar 

  94. S. Skaarup, in: S. Radhakrishna and A. Daud (Eds), Solid-State Materials, Narosa Publ., New Delhi, 1991, p. 3.

    Chapter  Google Scholar 

  95. J. O’M. Bockris and A. Reddy, Modern Electrochemistry, Plenum Press, New York, 1974, p. 1007.

    Google Scholar 

  96. Q. Liu and W.L. Worrell, Solid State Ionics, 28-30 (1988) 1419.

    Article  Google Scholar 

  97. M. Visbisky, R.C. Stinebring and C.F. Holmes, J. Power Sources, 26 (1989) 185.

    Article  CAS  Google Scholar 

  98. T.R. Jow and C.C. Liang, J. Electrochem. Soc., 130 (1983) 737.

    Article  CAS  Google Scholar 

  99. U. von Alphen and M.F. Bell, Solid State Ionics, 3-4 (1981) 259.

    Article  Google Scholar 

  100. C. Berthier, M. Fouletier, R.R. Haering, D.W. Murphy, J. Rouxel, B.C. Tofield, W. Weppner, M.S. Whittingham and W.L. Worrell, in: D.W. Murphy, J. Broadhead and B.C.H. Steele (Eds.), Materials for Advanced Batteries, Plenum Publ., New York, 1980, 343.

    Google Scholar 

  101. J.B. Goodenough, in: J.R. Akridge and M. Balkanski (Eds), Solid-State Microbatteries, NATO-ASI Series, Ser. B217, Plenum Press, New York, 1990, p. 157.

    Chapter  Google Scholar 

  102. H.L. Tuller and M.W. Barsoum, J. Non-Cryst. Solids, 73 (1985) 331.

    Article  CAS  Google Scholar 

  103. M. Barsoum, in: H.L. Tuller and M. Balkanski (Eds.), Science and Technology of Fast Ion Conductors, NATO-ASI Series, Ser. B199, Plenum Press, New York, 1989, p. 241.

    Chapter  Google Scholar 

  104. S.L. Shue and H.L. Tuller, Solid State Ionics, 40-41 (1990) 693.

    Article  CAS  Google Scholar 

  105. M.H. Velez, H.L. Tuller and D.R. Uhlmann, J. Non-Cryst. Solids, 49 (1982) 351.

    Article  CAS  Google Scholar 

  106. C. Julien, M. Massot, M. Balkanski and H.L. Tuller, in: K.M. Nair (Ed.), Glasses for Electronic Applications, The American Ceramic Soc., Westerville, 1991, p. 51.

    Google Scholar 

  107. U. von Alphen, A. Rabenau and G.H. Talat, Appl. Phys. Lett., 30 (1977) 621.

    Article  Google Scholar 

  108. P.A.G. O’Hare and G.K. Johnson, J. Chem. Thermodyn., 7 (1975) 13.

    Article  Google Scholar 

  109. W. Weppner, in: J.R. Akridge and M. Balkanski (Eds.), Solid-State Microbatteries, NATO-ASI Series, Ser. B217, Plenum Press, New York, 1990, p. 371.

    Chapter  Google Scholar 

  110. K. Ploog, in: H.C. Freyhardt (Ed.), Crystals Growth, Properties and Applications, vol. 3, Springer, Heidelberg, 1980, p. 73.

    Google Scholar 

  111. P. Dzwonkowski, M. Eddrief, C. Julien and M. Balkanski, in: G.A. Nazri, R.A. Huggins, D. Schreiber and M. Balkanski (Eds.), Solid State Ionics II, Mat. Res. Symp. Proc. vol. 210, Mat. Res. Soc., Pittsburgh, 1991, p. 633.

    Google Scholar 

  112. R.Z. Bachrach, in: B.R. Pamplin (Ed.), Crystal Growth, Pergamon, Oxford, 1980, p. 221.

    Google Scholar 

  113. E.C.H. Parker, in: E.C.H. Parker (Ed.), Technology and Physics of Molecular Beam Epitaxy, Plenum, New York, 1985.

    Google Scholar 

  114. R.E. Honing and D.A. Kramer, RCA Rev., 30 (1969) 285.

    Google Scholar 

  115. J.Y. Emery, C. Julien, M. Jouanne and M. Balkanski, Appl. Surf. Sci., 33-34 (1988) 619.

    Article  Google Scholar 

  116. C. Julien, N. Benramdane and J.P. Guesdon, Semicond. Sci. Technol., 5 (1990) 905.

    Article  CAS  Google Scholar 

  117. J.Y. Emery, L. Brahim-Ostmane, M. Jouanne, C. Julien and M. Balkanski, Mater. Sci. Eng. B, 3 (1989) 13.

    Article  Google Scholar 

  118. G.J. Davis and D. Williams, in: E.C.H. Parker (Ed.), The Technology and Physics of Molecular Beam Epitaxy, Plenum, New York, 1981, p. 15.

    Google Scholar 

  119. C.C. Liang, J. Epstein and G.H. Boyle, J. Electrochem. Soc., 116 (1969) 1452.

    Article  CAS  Google Scholar 

  120. J.W. Geus, in: W. Van Gool (Ed.), Fast Ion Transport in Solids, North-Holland, Amsterdam, 1973, p. 331.

    Google Scholar 

  121. P. Chaudhari, J. Vac. Sci. Technol., 9 (1972) 520.

    Article  CAS  Google Scholar 

  122. C. Julien, M. Eddrief, K. Kambas and M. Balkanski, Thin Solid Films, 137 (1986) 27.

    Article  CAS  Google Scholar 

  123. M. Eddrief, C. Julien, M. Balkanski and K. Kambas, Materials Letters, 2 (1984) 432.

    Article  CAS  Google Scholar 

  124. C. Julien, M. Eddrief, M. Balkanski, E. Hatzikraniotis and K. Kambas, Phys. Status Solidi A, 88 (1985) 641.

    Article  Google Scholar 

  125. R. Bichsel and F. Lévy, Thin Solid Films, 124 (1985) 75.

    Article  CAS  Google Scholar 

  126. R. Bichsel and F. Lévy, J. Phys. D, 19 (1986) 1809.

    Article  CAS  Google Scholar 

  127. A.D. Souder and D.E. Brodie, Can. J. Phys., 50 (1972) 2724.

    Article  CAS  Google Scholar 

  128. J.P. Guesdon, C. Julien and M. Balkanski and A. Chevy, Phys. Status Solidi A, 101 (1987) 495.

    Article  CAS  Google Scholar 

  129. J.P. Guesdon, A. Kobbi, C. Julien, M. Balkanski, Phys. Status Solidi A, 102 (1987) 327.

    Article  CAS  Google Scholar 

  130. K.C. Nagpal and S.Z. Ali, Acta Cryst. A, 31 (1975) 567.

    Google Scholar 

  131. T. Takahashi and O. Yamamoto, US. Patent, 3,558357 (1971).

    Google Scholar 

  132. J.H. Kennedy, F. Chen and J. Hunter, J. Electrochem. Soc., 120 (1973) 454.

    Article  CAS  Google Scholar 

  133. Y. Ito, K. Yakushiro, M. Hiratani, K. Miyauchi and T. Kudo, Solid State Ionics, 18-19 (1986) 277.

    Article  CAS  Google Scholar 

  134. M.R. Arora and E. Giani, Thin Solid Films, 71 (1980) 103.

    Article  CAS  Google Scholar 

  135. M.R. Arora and J. Childo, J. Electrochem. Soc., 123 (1976) 222.

    Article  CAS  Google Scholar 

  136. M.R. Arora, Thin Solid Films, 71 (1980) 255.

    Article  CAS  Google Scholar 

  137. T. Minami and H. Kaneko, Solid State Ionics, 17 (1985) 57.

    Article  CAS  Google Scholar 

  138. A. Levasseur, M. Kbala, P. Hagenmuller, G. Couturier and Y. Danto, Solid State Ionics, 9-10 (1983) 1439.

    Article  CAS  Google Scholar 

  139. K. Kanehori, K. Matsumoto, K. Miyauchi and T. Kudo, Solid State Ionics, 9-10 (1983) 1445.

    Article  CAS  Google Scholar 

  140. K. Miyauchi, K. Matsumoto, K. Kanehori and T. Kudo, Solid State Ionics, 9-10 (1983) 1469.

    Article  CAS  Google Scholar 

  141. S. Chandra and V.K. Mohabey, Phys. Status Solidi A, 53 (1979) 63.

    Article  CAS  Google Scholar 

  142. S.A. Suthanthiraraj and S. Radhakrishna, Solid State Ionics, 20 (1986) 45.

    Article  CAS  Google Scholar 

  143. T. Minami, in: B.V.R. Chowdari and S. Radhakrishna (Eds.), Materials for Solid State Batteries, World Scientific, Singapore, 1986, p. 181.

    Google Scholar 

  144. L.W. Zhang, M. Kobayashi and K. Goto, Solid State Ionics, 18-19 (1986) 741.

    Article  CAS  Google Scholar 

  145. L.W. Zhang, M. Yahagi and K. Goto, Solid State Ionics, 18-19 (1986) 1163.

    Article  CAS  Google Scholar 

  146. R. Gland and L.V. Gregor, in: L.I. Maissel and R. Gland (Eds.), Handbook of Thin Film Technology, McGraw-Hill, New York, 1970, p. 7.

    Google Scholar 

  147. F.E. Swindells and W.R. Lanier, U.S. Patent, 3, 547, 700 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Julien, C., Nazri, GA. (1994). Design and optimization of solid-state microbatteries. In: Solid State Batteries: Materials Design and Optimization. The Kluwer International Series in Engineering and Computer Science, vol 271. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2704-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2704-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-9460-0

  • Online ISBN: 978-1-4615-2704-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics