Skip to main content

Abstract

Trace and major elements, certain isotopes, and the compounds in which they are incorporated have been used to identify petroleum microseepage. Applying these forms is a departure from typical surface geochemical methods and represents an attempt to find more reliable techniques, other than soil gas, to target petroleum accumulations. The results have been encouraging and have added information to the understanding of microseepage and the changes it causes in the near-surface. However, the results have not been sufficiently reliable, repeatable, or cost-effective to warrant replacing soil gas, radiometrics, or iodine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams, M. A. (1989). Interpretation of methane carbon isotopes extracted from surficial marine sediments for detection of subsurface hydrocarbons, Association of Petroleum Geochemical Explorationists Bulletin, Vol. 5, pp. 139–166.

    Google Scholar 

  • Alekseev, F. A. (1959). Radiometric method of oil and gas exploration, nature of radiometric anomalies and radiogeochemical anomalies in the region of oil and gas fields, in Yadernaya Geofizika, Gostoptekhizdat, Moscow, pp. 3–26; also an abstract in Geophysical Abstracts, No. 183–525, Oct.–Dec. 1960, p. 607.

    Google Scholar 

  • Alekseev, F. A., R. P. Gottikh, and G. D. Sundukove (1961). Results of radiogeochemical investigations of the Kyurov-Dag Oil Field., in Yadernaya Geofiziika, Gostoptekhizdat, Moscow, pp. 160–176; also as an abstract in Geophysical Abstracts, (1963). No. 199–286, Aug., pp. 728–729.

    Google Scholar 

  • Baker, W. E. (1966). Humic substances and their role in the solubization and transport of metals, in D. Carlisle, ed., Mineral Exploration, Biological Systems and Organic Matter, Prentice-Hall, Englewood Cliffs, NJ, pp. 377–407.

    Google Scholar 

  • Barton, R. H., (1990). Relationship of surface magnetic susceptibility variations in hydrocarbons and subsurface structures, Association of Petroleum Geochemical Explorationists Bulletin, Vol. 6, No. 1, pp. 1–11.

    Google Scholar 

  • Bolt, G. H. and M. G. M. Bruggenwart (1976). Soil Chemistry, A. Basic Elements, Elsevier Scientific Publishing Co., New York.

    Google Scholar 

  • Boyle, R. W. (1982). Geochemical Prospecting for Thorium and Uranium Deposits, Elsevier Scientific Publishing Co., New York.

    Google Scholar 

  • Brookins, D. G. (1987). Eh-pH Diagrams for Geochemistry, Springer-Verlag, New York.

    Google Scholar 

  • Cannon, H. L. (1952). The effects of uranium-vanadium deposits on the vegetation of the Colorado Plateau, American Journal of Science, Vol. 250, pp. 737–770.

    Article  Google Scholar 

  • Dalzeil, M. C. and T. J. Donovan (1984). Correlations of suspected petroleum-generated biogeochemical and aeromagnetic anomalies, Bell Creek Oil Field, Montana, in Unconventional Methods in Exploration for Petroleum and Natural Gas Symposium III, Southern Methodist University, Dallas, TX, pp. 59–69.

    Google Scholar 

  • Donovan, T. J. (1974). Petroleum microseepage at Cement, Oklahoma: Evidence and mechanism, American Association of Petroleum Geologists Bulletin, Vol. 58, pp. 429–446.

    Google Scholar 

  • Donovan, T. J. (1985). Stable isotopes in petroleum exploration-oxygen isotopes: Special Publication No. 1, in Surface and Near-surface Geochemical Methods in Petroleum Exploration, Association of Petroleum Geochemical Explorationists, pp. Fl–F9.

    Google Scholar 

  • Donovan, T. J., R. L. Noble, R. L., I. Friedman, and J. D. Gleason (1975). A possible petroleum-related geochemical anomaly in surface rocks, Boulder and Weld Counties, U.S. Geologic Survey Open-File Report No. 75–47.

    Google Scholar 

  • Donovan, T. J., R. L. Forgey, and A. A. Roberts (1979). Aeromagnetic detection of digenetic magnetite over oil fields, American Association of Petroleum Geologists Bulletin, Vol. 63, pp. 245–248.

    Google Scholar 

  • Donovan, T. J. and A.A. Roberts (1980). Stable isotope anomalies in surface rocks and helium anomalies in soil-gas over fields—Causes and correlations (Abstract), American Chemical Society Meeting, Houston, TX, March.

    Google Scholar 

  • Donovan, T. J., J. D. Hendricks, A. A. Roberts, and P. T. Eliason (1984). Low altitude aeromagnetic reconnaissance for petroleum in the Artic National Wildlife Refuge, Geophysics, Vol. 49, No. 8, pp. 1338–1353.

    Article  Google Scholar 

  • Donovan, T. J., D. P. O’Brien, J. G. Bryan, and K.I. Cunningham (1986). Near-surface magnetic indicators of buried hydrocarbons: Aeromagnetic detection and separation of spurious signals, Association of Petroleum Geochemical Explorationists Bulletin, Vol. 2, No. 1, pp. 1–20.

    Google Scholar 

  • Duchscherer, W. (1984). Geochemical Hydrocarbon Prospecting, Pennwell Books, Tulsa, OK.

    Google Scholar 

  • Duchscherer, W. (1985). Bell Creek Oil Field, a further geochemical confirmation, Association of Petroleum Geochemical Explorationists Bulletin, Vol. 1, pp. 57–84.

    Google Scholar 

  • Duchscherer, W. (1988). Organic carbon contamination and the delta C method of geochemical hydrocarbon prospecting, Association of Petroleum Geochemical Explorationists Bulletin, Vol. 4, No. 1, pp. 1–29.

    Google Scholar 

  • Duchscherer, W. and L. Mashburn (1987). Application of the Delta C method to Caledonia and Walbanger fields, Elbert County, Colorado, Association of Petroleum Geochemical Explorationists Bulletin, Vol. 3, pp. 15–39.

    Google Scholar 

  • Elmore, R. D., R. McCollum, and M. H. Engel (1989). Evidence for a relationship between hydrocarbon migration and digenetic magnetic minerals: Implication for petroleum exploration, Association of Petroleum Geochemical Explorationists Bulletin, Vol. 5, No. l,pp. 1–17.

    Google Scholar 

  • Foote, R. S. (1984). Significance of near-surface magnetic anomalies, Unconventional Methods in Petroleum and Natural Gas Exploration, Symposium III, Dallas, Texas, pp. 12–24.

    Google Scholar 

  • Foote, R. S. and G. J. Long (1988). Correlations of oil and gas producing areas with magnetic properties of the upper rock column, Eastern Colorado, American Association of Petroleum Geochemical Explorationists Bulletin, Vol. 4, No. 1, pp. 47–61.

    Google Scholar 

  • Fuex, A.N. (1977). The use of stable carbon isotopes in hydrocarbon exploration, Journal of Geochemical Exploration, Vol. 7, pp. 155–188.

    Article  Google Scholar 

  • Garrels, R. M. and C. L. Christ (1965). Solutions, Minerals, and Equilibria, Harper and Row, New York, pp. 136–139.

    Google Scholar 

  • Harshman, E. N. (1972). Geology and Uranium Deposits, Shirley Basin, Wyoming, U.S. Geologic Survey, Professional Paper 754.

    Google Scholar 

  • Hawkes, H. E. and J. S. Webb (1962). Geochemistry in Mineral Exploration, Harper and Row, New York, pp. 70–238.

    Google Scholar 

  • Henry, W. E. (1989). Magnetic detection of hydrocarbon seepage in a frontier exploration region, Association of Petroleum Geochemical Explorationists Bulletin, Vol. 5, No. 1, pp. 18–29.

    Google Scholar 

  • Hoefs, J. (1987). Stable Isotope Geochemistry, 3rd Ed., Springer-Verlag, New York, p. 223.

    Google Scholar 

  • Horvitz, L. (1985). Stable carbon isotopes and exploration for petroleum: presented at the Association of Petroleum Geochemical Exploration, Short Course, Rocky Mountain Section AAPG SEPM-EMD, Denver, CO, June 1985.

    Google Scholar 

  • Hostetler, P. B. and R. M. Garrels (1962). Transportation and precipitation of uranium and vanadium at low temperatures with special reference to sandstone type uranium deposits, Economic Geology, Vol. 57, pp. 137–167.

    Article  Google Scholar 

  • Johnson, A.C. (1970). How to hunt oil and gas using the inorganic surface geochemical method, Oil and Gas Journal, Tulsa, OK, Vol. 68, No. 49, Dec. 7, pp. 110–112.

    Google Scholar 

  • Ketner, K. B., J. G. Evans, andT. D. Hessin (1968). Geochemical anomalies in the Swales Mountain area, Elko County, Nevada, U.S. Geologic Survey Circular 588.

    Google Scholar 

  • Klusman, R. W., M. A. Saeed, and M. A. Abu Ali (1992). The potential use of biogeochemistry in the detection of petroleum microseepage, American Association of Petroleum Geochemical Bulletin, Vol. 76, pp. 851–863.

    Google Scholar 

  • Ma, M. and E. P. Horvitz (1989). 13C/12C isotope ratios of methane in near surface sand: A study of the Dolphin Field in North Dakota, Association of Petroleum Geochemical Explorations Bulletin, Vol. 5, pp. 167–176.

    Google Scholar 

  • Machel, H. G. and E. A. Burton (1991). Chemical and microbial processes causing anomalous magnetization in environments affected by hydrocarbon seepage, Geophysics, Vol. 50, No. 5, pp. 598–605.

    Article  Google Scholar 

  • Matveeva, L. A. (1963). Hydrolytic precipitation of heavy metals, in G. V. Bogomolov and L. S. Balashov, eds., Hydrogeochemistry, Akademiya Nauk SSSR, Moscow, pp. 78–85.

    Google Scholar 

  • Miodrag S. (1975). Should we consider geochemistry an important exploratory technique? Oil and Gas Journal, Aug. 4, pp. 106–110.

    Google Scholar 

  • Ransome, W. R. (1969). Case history of the Sixto Oil Field, Stan-County, Texas; A geochemical discovery, in W. B. Heroy, ed., Unconventional Methods in Exploration for Petroleum and Natural Gas, Southern Methodist University, Dallas, TX, pp. 187–196.

    Google Scholar 

  • Reynolds, R. L., N. S. Fishman, and M. R. Hudson (1991). Sources of aeromagnetic anomalies over Cement Oil Field (Oklahoma), Simpson Oil Field (Alaska), and the Wyoming-Idaho-Utah thrust belt, Geophysics, Vol. 56, No. 5, pp. 606–617.

    Article  Google Scholar 

  • Roeming, S.S. and T. J. Donovan (1985). Correlations among hydrocarbon microseepage, soil chemistry, and uptake of micronutrients by plants, Bell Creek Oil Field, Montana, Journal of Geochemical Explorationists, Vol. 23, pp. 139–162.

    Article  Google Scholar 

  • Saeed, M. A. (1988). Relationship of trace elements in soils and plants to petroleum production in Eagle Springs Oil Field, Railroad Valley, Nevada, unpublished Master’s thesis, Colorado School of Mines, Golden, CO.

    Google Scholar 

  • Saunders, D. F. (1989). Simplified evaluation of soil magnetic susceptibility and soil gas hydrocarbon anomalies, Association of Petroleum Geochemical Explorationists Bulletin, Vol. 5, pp. 30–44.

    Google Scholar 

  • Saunders, D. F. and S. A. Terry (1985). Onshore exploration using the new geochemistry and geomorphology, Oil and Gas Journal, Sept. 16, pp. 126–130.

    Google Scholar 

  • Shacklette, H. T. and J. R. Boerngen (1984). Element concentrations in soils and other surficial material of the conterminous United States, U.S. Geologic Survey Professional Paper 1270.

    Google Scholar 

  • Sikka, D. B. (1964). Possible modes of formation of radiometric anomalies, Geophysical Abstracts, No. 206–265, p. 227.

    Google Scholar 

  • Sveshnikov, G. B. and Y. S. Ryss (1964). Electrochemical processes in sulfide deposits and their geochemical significance, Geokhimiya, No. 3, pp. 208–218; translation available in Geochemistry International, Vol. 1, 1964, pp. 198–204.

    Google Scholar 

  • Szalay, A. and M. Szilagyi (1967). The association of vanadium with humic acids, Geochem Cosomochim Acta, Vol. 31, pp. 1–6.

    Article  Google Scholar 

  • Waples, D. (1981). Organic Geochemistry in Exploration, Burgess Publishing Co., Minneapolis, MN, p. 157.

    Google Scholar 

  • Waples, D. (1985). Geochemistry in Petroleum Exploration, International Human Resources Development Corp., Boston.

    Book  Google Scholar 

  • Woltemate, I. (1982). Isotopische Untersuchungen zur bakteriellen Gasbildung in cinem Subwasseree: Diplomarbeit, Universitas Clausthal, Clausthal Zellerfeld, Germany.

    Google Scholar 

  • Zak, I. (1964). Geochemical study of soils in the Heletz Oil Field, Israel Journal of Earth Sciences, Vol. 13, pp. 183–184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tedesco, S.A. (1995). Major and Minor Elements. In: Surface Geochemistry in Petroleum Exploration. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2660-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2660-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6142-8

  • Online ISBN: 978-1-4615-2660-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics