Skip to main content

In vivo models of P-glycoprotein-mediated multidrug resistance

  • Chapter

Part of the book series: Cancer Treatment and Research ((CTAR,volume 73))

Abstract

This chapter is intended as a critical discussion of the various approaches that can be taken to study reversal of multidrug resistance in tumors growing in animals. For this discussion, multidrug resistance will be taken to mean cross-resistance to a variety of amphipathic, hydrophobic drugs that are substrates for the energy-dependent multidrug transporter, P-glycoprotein (recently reviewed in [1,2]). Although there are certainly other forms of multidrug resistance that occur clinically, most of these have not yet been defined clearly at a biochemical or molecular level, and hence development of precise in vivo model systems to study these other mechanisms of multidrug resistance have yet to be developed. The systems that will be discussed in this chapter will be evaluated with respect to their ability to detect agents capable of reversing P-glycoprotein-mediated resistance in resistant cells, with little or no sensitizing effect in control cells that lack P-glycoprotein.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gottesman, M.M, Schoenlein, P., Currier, S., Bruggemann, E., and Pastan, I. 1991. Biochemical basis for multidrug resistance in cancer. In Biochemical and Molecular Aspects of Selected Cancers, Vol. I, edited by T. Pretlow and T. Pretlow. Academic Press: San Diego, pp. 339–371.

    Google Scholar 

  2. Pastan, I. and Gottesman, M.M. 1993. The Biochemical Basis of P-glycoprotein-mediated. Multidrug resistance. Annu. Rev. Biochem. 62: 385–427.

    Article  PubMed  Google Scholar 

  3. Ueda, K., Cardarelli, C., Gottesman, M.M., and Pastan, I. 1987. Expression of a full-length cDNA for the human ‘MDR1’ (P-glycoprotein) gene confers multidrug resistance to colchicine, doxorubicin, and vinblastine. Proc. Natl. Acad. Sci. USA 84: 3004–3008.

    Article  PubMed  CAS  Google Scholar 

  4. Gros, P. Ben-Neriah, Y.U., Croop, J., and Housman, D.E. 1986. Isolation and expression of a complementary DNA that confers multidrug resistance. Nature 323: 728–731.

    Article  PubMed  CAS  Google Scholar 

  5. Galski, H., Sullivan, M., Willingham, M.C., Chin, K.-V., Gottesman, M.M., Pastan, I., and Merlino, G.T. 1989. Expression of a human multidrug-resistance cDNA (MDR1) in the bone marrow of transgenic mice: resistance to daunomycin-induced leukopenia. Mol. Cell. Biol. 9: 4357–4363.

    PubMed  CAS  Google Scholar 

  6. Chaudhary, P.M. and Roninson, I.B. 1991. Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 66: 85–94.

    Article  PubMed  CAS  Google Scholar 

  7. Mickisch, G.H., Licht, T., Merlino, G.T., Gottesman, M.M., and Pastan, I. 1991. Chemotherapy and chemosensitization of transgenic mice which express the human multidrug resistance gene in bone marrow: efficacy, potency and toxicity. Cancer Res. 51: 5417–5424.

    PubMed  CAS  Google Scholar 

  8. Akiyama, S-L, Fojo, A., Hanover, J.A., Pastan, I., and Gottesman, M.M. 1985. Isolation and genetic characterization of human KB cell lines resistant to multiple drugs. Somatic Cell Mol. Genet. 11: 117–126.

    Article  CAS  Google Scholar 

  9. Shen, D-W., Fojo, A., Chin, J.E., Roninson, I.B., Richert, N., Pastan, I. 1986. Gottesman, M.M.: Human multidrug resistant cell lines: increased mdr1 expression can precede gene amplification. Science 232: 643–645.

    Article  PubMed  CAS  Google Scholar 

  10. Goldstein L.J., Galski, H., Fojo, A., Willingham, M., Lai, S.-L., Gazdar, A., Pirker, R., Green, A., Crist, W., Brodeur, G., Grant, C., Lieber, M., Cossman, J., Gottesman, M.M., and Pastan, I. 1989. Expression of a multidrug resistance gene in human cancers. J. Natl. Cancer Inst. 81: 116–124.

    Article  PubMed  CAS  Google Scholar 

  11. Mickisch, G., Merlino, G.T., Galski, H., Gottesman, M.M., and Pastan, I. 1991. Transgenic mice that express the human multidrug resistance gene in bone marrow enable a rapid identification of agents that reverse drug resistance. Proc. Natl. Acad. Sci. USA 88: 547–551.

    Article  PubMed  CAS  Google Scholar 

  12. Mickisch, G.H., Aksentijevich, I., Schoenlein, P.V., Goldstein, L.J., Galski, H., Stahle, C., Sachs, D.H., Pastan, I., and Gottesman, M.M. 1992. Transplantation of bone marrow cells from transgenic mice expressing the human MDR1 gene results in long-term protection against the myelosuppressive effect of chemotherapy in mice. Blood 79: 1–7.

    Google Scholar 

  13. Dalton, W.S., Grogan, T.M., Meltzer, P.S., Scheper, R.J., Durie, B.G.M., and Salman, S. 1989. Drug-resistance in multiple myeloma and non-Hodgkin’s Iymphoma: detection of P-glycoprotein and potential circumvention by addition of verapamil to chemotherapy. J. Clin. Oncol. 7: 415–424.

    PubMed  CAS  Google Scholar 

  14. Gottesman, M.M. and Pastan, I. 1989. Clinical trials of agents which reverse multidrug-resistance (editorial). J. Clin. Oncol. 7: 409–411.

    PubMed  CAS  Google Scholar 

  15. Pastan, I., Willingham, M.C., and Gottesman, M.M. 1991. Molecular manipulations of the multidrug transporter: a new role for transgenic mice. FASEB J. 5: 2523–2528.

    PubMed  CAS  Google Scholar 

  16. Mickisch, G.H., Pastan, I., and Gottesman, M.M. 1991. Multidrug resistant transgenic mice as a novel pharmacologic tool. BioEssays 13: 381–387.

    Article  PubMed  CAS  Google Scholar 

  17. Mickisch, G.H., Merlino, G.T., Alken, P.M., Gottesman, M.M., and Pastan, I. 1991. New potent verapamil derivatives that reverse multidrug resistance in human renal carcinoma cells and in transgenic mice expressing the human MDR1 gene. J. Urol. 146: 447–453.

    PubMed  CAS  Google Scholar 

  18. Mickisch, G.H., Rahman, A., Pastan, I., and Gottesman, M.M. 1992. Increased effectiveness of liposome-encapsulated doxorubicin in multidrug-resistant transgenic mice compared with free doxorubicin. J. Natl. Cancer Inst. 84: 804–805.

    Article  PubMed  CAS  Google Scholar 

  19. Thierry, A., Jorgensen, J.T., Forst, D., and Rahman, A. 1989. Modulation of multidrug resistance in Chinese hamster cells by liposome encapsulated doxorubicin. Cancer Commun. 1: 311–316.

    PubMed  CAS  Google Scholar 

  20. Hamada, H. and Tsuruo, T. 1986. Functional role for the 170-to 180-kDa glycoprotein specific to drug-resistant cells as revealed by monoclonal antibodies. Proc. Natl. Acad. Sci. USA 83: 7785–7788.

    Article  PubMed  CAS  Google Scholar 

  21. Mickisch, G.H., Pai, L.H., Gottesman, M.M., and Pastan, I. 1992. Monoclonal antibody MRK16 reverses the multidrug resistance of multidrug-resistant transgenic mice. Cancer Res. 52: 4427–4432.

    PubMed  CAS  Google Scholar 

  22. Mickisch, G.H., Pai, L.H., Siegsmund, M., Campain, J., Gottesman, M.M., and Pastan, I. 1993. Pseudomonas exotoxin conjugated to monoclonal antibody MRK16 specifically kills multidrug resistant cells in cultured renal carcinomas and in MDR-transgenic mice. J. Urol. 149: 174–178.

    PubMed  CAS  Google Scholar 

  23. Thiebaut, F. Tsuruo, T., Hamada, H., Gottesman, M.M., Pastan, I., and Willingham, M.C. 1987. Cellular localization of the multidrug resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA 84: 7735–7738.

    Article  PubMed  CAS  Google Scholar 

  24. Thiebaut, F., Tsuruo, T., Hamada, H., Gottesman, M.M., Pastan, I., and Willingham, M.C. 1989. Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein, P170: evidence for localization in brain capillaries and cross-reactivity of one antibody with a muscle protein. J. Histochem. Cytochem. 37: 159–164.

    Article  PubMed  CAS  Google Scholar 

  25. McLachlin, J.R., Eglitis, M.A., Ueda, K., Kantoff, P.W., Pastan, I.H., Anderson, W.R., and Gottesman, M.M. 1990. Expression of a human complementary DNA for the multidrug resistance gene in murine hematopoietic precursor cells with the use of retroviral gene transfer. J. Natl. Cancer Inst. 82: 1260–1263.

    Article  PubMed  CAS  Google Scholar 

  26. Sorrentino, B.P., Brandt, S., Bodine, D., Gottesman, M.M., Pastan, I., Cline, A., and Nienhuis, A.W. 1992. Retroviral transfer of the human MDR1 gene permits selection of drug resistant bone marrow cells in vivo. Science 257: 99–103.

    Article  PubMed  CAS  Google Scholar 

  27. Podda, S., Ward, M., Himelstein, A., Richardson, C., de la Flor-Weiss, E., Smith, L., Gottesman, M.M., Pastan, I., and Bank, A. 1992. Transfer and expression of the human multidrug resistance gene into live mice. Proc. Natl. Acad. Sci. USA 89: 9676–9680.

    Article  PubMed  CAS  Google Scholar 

  28. Slate, D. and Michelson, S. 1991. Drug resistance-reversal strategies: comparison of experimental data with model predictions. J. Natl. Cancer Inst. 83: 1574–1580.

    Article  PubMed  CAS  Google Scholar 

  29. Pastan, I., Gottesman, M.M., Ueda, K., Lovelace, E., Rutherford, A.V., and Willingham, M.C. 1988. A retrovirus carrying an MDR1 cDNA confers multidrug resistance and polarized expression of P-glycoprotein in MDCK cells. Proc. Natl. Acad. Sci. USA 85: 4486–4490.

    Article  PubMed  CAS  Google Scholar 

  30. Guild, B.C., Mulligan, R.C., Gors, P., and Housman, D.E. 1988. Retroviral transfer of a murine cDNA for multidrug resistance confers pleiotropic drug resistance to cells without prior drug selection. Proc. Natl. Acad. Sci. USA 85: 1595–1599.

    Article  PubMed  CAS  Google Scholar 

  31. Kane, S.E., Troen, B.R., Gal, S., Ueda, K., Pastan, I., and Gottesman, M.M. 1988. Use of a cloned multidrug-resistance gene for co-amplification and overproduction of MEP, a transformation-regulated secreted acid protease. Mol. Cell. Biol. 8: 3316–3321.

    PubMed  CAS  Google Scholar 

  32. Germann, U.A., Chin, K-V., Pastan, I., and Gottesman, M.M. 1990. Retroviral transfer of a chimeric multidrug resistance-adenosine deaminase gene. FASEB J. 4: 1501–1507.

    PubMed  CAS  Google Scholar 

  33. Konig, R., Ashwell, G., and Hanover, J.A. 1989. Overexpression and biosynthesis of CD4 in Chinese hamster ovary cells: Coamplification using the multidrug-resistance gene. Proc. Natl. Acad. Sci. USA 86: 9188–9192.

    Article  PubMed  CAS  Google Scholar 

  34. Clarke, R., Currier, S., Kaplan, O., Lovelace, E., Boulay, V., Gottesman, M.M., and Dickson, R.B. 1992. Effect of expression of the multidrug resistance MDR1 P-glycoprotein on hormone responsivity in MCF-7 human breast cancer cells. J. Natl. Cancer Inst. 84: 1506–1512.

    Article  PubMed  CAS  Google Scholar 

  35. Pearson, J.W., Fogler, W.E., Volker, K., Usui, N., Goldenberg, S.K., Gruys, E., Riggs, C.W., Komschlies, I., Wiltrout, R.H., Tsuruo, T., Pastan, I., Gottesman, M.M., and Longo, D.L. 1991. In vivo administration of MRK-16 monoclonal antibody reverses drug resistance in a human colon cancer xenograft expressing the MDR1 cDNA (Report). J. Natl. Cancer Inst. 83: 1386–1391.

    Article  PubMed  CAS  Google Scholar 

  36. Law, L.W., Dunn, T.B., Boyle. P.J., and Miller, J.H. 1949. Observations on the effect of a folic-acid antagonist on transplantable lymphomic leukemias in mice. J. Natl. Cancer Inst. 10: 179–192.

    PubMed  CAS  Google Scholar 

  37. Skipper, H.E., Schabel, F.M., Mellet, L.B., et al. 1950. Implications of biochemical, cytokinetic, pharmacologic, and toxicologic relationships in the design of optimal therapeutic schedules. Cancer Chemother. Rep. 54: 431–450.

    Google Scholar 

  38. Biedler, J.L. and Peterson, R.H.F. 1981. Altered plasma membrane glycoconjugates of Chinese hamster cells with acquired resistance to actinomycin D, daunorubicin and vincristine. In Molecular Actions and Targets for Chemotherapeutic Agents. Academic Press: pp. 453–482.

    Google Scholar 

  39. Ford, J.M. and Hait, W.N. 1990. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol. Rev. 42: 155–199.

    PubMed  CAS  Google Scholar 

  40. Skovsgaard, T. 1980. Circumvention of resistance to daunorubicin by N-acetyldaunorubicin in Ehrlich ascites tumor. Cancer Res. 40: 1077–1083.

    PubMed  CAS  Google Scholar 

  41. Slater, L.M., Murray, S.L., Wetzel, M.W., Wisdom, R.M., and DuVall, E.M. 1982. Verapamil restoration of daunorubicin responsiveness in daunorubicin-resistant Ehrlich ascites carcinoma. J. Clin. Invest. 70: 1131–1134.

    Article  PubMed  CAS  Google Scholar 

  42. Tsuruo, T., Iida, H., Tsukagoshi, S., and Sakurai, Y. 1981. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 41: 1967–1972.

    PubMed  CAS  Google Scholar 

  43. Slater, L.M., Sweet, P., Stupecky, M., Wetzel. M.W., and Gupta, S. 1986. Cyclosporin A corrects daunorubicin resistance in Ehrlich ascites carcinoma. Br. J. Cancer 54: 235–238.

    Article  PubMed  CAS  Google Scholar 

  44. Yamaguchi, T., Nakagawa, M., Shiraishi, N., Yoshida, T., Kiyosue, T., Arita, M., Akiyama, S., and Kuwano, M. 1986. Overcoming drug resistance in cancer cells with synthetic isoprenoids. J. Natl. Cancer Inst. 76: 947–953.

    PubMed  CAS  Google Scholar 

  45. Tsuruo, T., Iida, H., Kitatani, Y., Yokota, K., Tsukagoshi, S., and Kakurai, Y. 1984. Effects of quinidine and related compounds on cytotoxicity and cellular accumulation of vincristine and Adriamycin in drug-resistant tumor cells. Cancer Res. 44: 4303–4307.

    PubMed  CAS  Google Scholar 

  46. Inaba, M. and Maruyama, E. 1988. Reversal of resistance to vincristine in P388 leukemia by various polycyclic clinical drugs, with a special emphasis on quinacrine. Cancer Res. 48: 2064–2067.

    PubMed  CAS  Google Scholar 

  47. Sato, W., Fukazawa, N., Suzuki, T., Yusa, K., and Tsuruo, T. 1991. Circumvention of multidrug resistance by a newly synthesized quinoline derivative, MS-073. Cancer Res. 51: 2420–2424.

    PubMed  CAS  Google Scholar 

  48. Boesch, D., Gaveriaux, C., Jachez, B., Pourtier-Manzanedo, A., Bollinger, P., and Loor, F. 1991. In vivo circumvention of P-glycoprotein-mediated multidrug resistance of tumor cells with SDZ PSC 833. Cancer Res. 51: 4226–4233.

    PubMed  CAS  Google Scholar 

  49. Slater, L.M., Wetzel, M., Cho, J., and Sweet, P. 1991. Development of cyclosporin A mediated immunity in L1210 leukemia. Br. J. Cancer 64: 1098–1102.

    Article  PubMed  CAS  Google Scholar 

  50. Chitnis, M.P., Menon, R.S., Basrur, V.S., Adwankar, M.K., and Satyamoorthy, K. 1985. Reversal of natural resistance to bouvardin (NSC 259968) in sarcoma 180 cells in vitro and in vivo by verapamil. J. Cancer Res. Clin. Oncol. 110: 221–224.

    Article  PubMed  CAS  Google Scholar 

  51. Meador, J., Sweet, P., Stupecky, M., Wetzel, M., Murray, S., Gupta, S., and Slater, L. 1987. Enhancement by cyclosporin A of daunorubicin efficacy in Ehrlich ascites carcinoma and murine hepatoma 129. Cancer Res. 47: 6216–6219.

    PubMed  CAS  Google Scholar 

  52. Houghton, J.A., Meyer, W.H., and Houghton, P.J. 1987. Scheduling of vincristine: drug accumulation and response of xenografts of childhood rhabdomyosarcoma determined by frequency of administration. Cancer Treat. Rep. 71: 717–721.

    PubMed  CAS  Google Scholar 

  53. Mimnaugh, E.G., Fairchild, C.R., Fruehauf. J.P., and Sinha, B.K. 1991. Biochemical and pharmacological characterization of MCF-7 drug-sensitive and adriamycin resistant human breast tumor xenografts in athymic nude mice. Biochem. Pharmacol. 42: 391–402.

    Article  PubMed  CAS  Google Scholar 

  54. Mattern, J., Bak, M., and Volm, M. 1990. Intrinsic and acquired multidrug resistance in human lung carcinomas grown in nude mice. Anticancer Res. 10: 177–180.

    PubMed  CAS  Google Scholar 

  55. Volm, M., Bak, M., and Mattern, J. 1989. Intrinsic drug resistance in a human lung carcinoma xenograft is associated with overexpression of multidrug-resistance DNA-sequences and of plasma membrane glycoproteins. Arzneimittelforschung 38: 1189–1193.

    Google Scholar 

  56. Satta, T., Isobe, K., Yamuchi, M., Nakashima, I., Akiyama, S., Itou, K., Watanabe, T., and Takagi, H. 1991. Establishment of drug resistance in human gastric and colon carcinoma xenograft lines. Jpn. J. Cancer Res. 82: 593–598.

    Article  PubMed  CAS  Google Scholar 

  57. Hill, A.B., Beck, W.S., and Trent, J.M. 1988. Cytogenetic and molecular characterization of tumors in nude mice derived from a multidrug-resistant human leukemia cell line. Cancer Res. 48: 393–398.

    PubMed  CAS  Google Scholar 

  58. Hamada, H. Miura, K., Ariyoshi, K., Heike, Y., Sato, S., Kameyama, K.-Z., Kurosawa, Y., and Tsuruo, T. 1990. Mouse-human chimeric antibody against the multidrug transporter P-glycoprotein. Cancer Res. 50: 3167–3171.

    PubMed  CAS  Google Scholar 

  59. Formelli, F., Cleris, L., and Carsana, R. 1988. Effect of verapamil on doxorubicin activity and pharmacokinetics in mice bearing resistant and sensitive solid tumors. Cancer Chemother. Pharmacol. 21: 329–336.

    Article  PubMed  CAS  Google Scholar 

  60. Horton, J.K., Thimmaiah, K.N., Houghton, J.A., Horowitz, M.E., and Houghton, P.J. 1989. Modulation by verapamil of vincristine pharmacokinetics and toxicity in mice bearing human tumor xenografts. Biochem. Pharmacol. 38: 1727–1736.

    Article  PubMed  CAS  Google Scholar 

  61. Keith, W.N., Mee, P.J., and Brown, R. 1990. Response of mouse skin tumors to doxorubicin is dependent on carcinogen exposure. Cancer Res. 50: 6841–6847.

    PubMed  CAS  Google Scholar 

  62. Kaplan, O., Jaroszewski, J.W., Clarke, R., Fairchild, C.R., Schoenlein, P., Goldenberg, S., Gottesman, M.M., and Cohen, J.S. 1991. The multidrug resistance phenotype: 31P nuclear magnetic resonance characterization and 2-deoxyglucose toxicity. Cancer Res. 51: 1633–1644.

    Google Scholar 

  63. Furman, E., Margalit, R., Bendel, P., Horowitz, A., and Degani, H. 1991. In vivo studies by magnetic resonance imagery and spectroscopy of the response to tamoxifen of MCF7 human breast cancer implanted in nude mice. Cancer Commun. 3: 287–297.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gottesman, M.M., Mickisch, G.H., Pastan, I. (1994). In vivo models of P-glycoprotein-mediated multidrug resistance. In: Goldstein, L.J., Ozols, R.F. (eds) Anticancer Drug Resistance. Cancer Treatment and Research, vol 73. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2632-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2632-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6129-9

  • Online ISBN: 978-1-4615-2632-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics