Skip to main content

In vitro models of multiple drug resistance

  • Chapter
Anticancer Drug Resistance

Part of the book series: Cancer Treatment and Research ((CTAR,volume 73))

Abstract

The emergence of drug resistance in many ways reflects evolution; those cells capable of surviving exposure to an environmental stress propagate. This is particularly important in cancer, where it has been estimated that 90% of the 500,000 annual cancer fatalities in the United States are influenced by drug resistance [1]. Therefore, understanding the biochemical underpinnings of resistance is likely to be essential for developing new therapies to avoid or circumvent clinical resistance. The outcome of this therapeutic strategy will lead to the development of new agents or drug regimens that either reduce the frequency of drug resistance or eliminate drug resistance when it occurs and thereby improve cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Young, R.C. 1989. Drug resistance: the clinical problem. In Drug Resistance in Cancer Therapy, edited by R.F. Ozols. Kluwer Academic Publishers: Boston, pp. 1–12.

    Google Scholar 

  2. Biedler, J.L. and Riehm, H. 1970. Cellular resistance to actinomycin D in Chinese hamster cells in vitro: cross-resistance, radioautographic, and cytogenetic studies. Cancer Res. 30: 1174–1184.

    PubMed  CAS  Google Scholar 

  3. Gottesman, M.M. and Pastan, I. 1993. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 62: 385–427.

    PubMed  CAS  Google Scholar 

  4. Endicott, J.A. and Ling, V. 1989. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu. Rev. Biochem. 58: 137–171.

    PubMed  CAS  Google Scholar 

  5. Roninson, I.B. 1991. Molecular and Cellular Biology of Multidrug Resistance in Tumor Cells, edited by I.B. Roninson. Plenum Press: New York.

    Google Scholar 

  6. Schneider, E., Hsiang, Y.-H., and Lui, L.F. 1990. DNA topoisomerases as anticancer drug targets. Adv. Pharmacol. 21: 149–183.

    PubMed  CAS  Google Scholar 

  7. Akiyama, S.-I., Fojo, A., Hanover, J.A., Pastan, I., and Gottesman, M.M. 1985. Isolation and genetic characterization of human KB cell lines resistant to multiple drugs. Somatic Cell Mol. Gen. 11: 117–126.

    CAS  Google Scholar 

  8. Beck, W.T. and Danks, M.K. 1991. Characteristics of multidrug resistance in human tumor cells. In Molecular and Cellular Biology of Multidrug Resistance in Tumor Cells, edited by I.B. Roninson. Plenum Press: New York, pp. 3–55.

    Google Scholar 

  9. Sugimoto, Y. and Tsuruo, T. 1991. Development of multidrug resistance in rodent cell lines. In Molecular and Cellular Biology of Multidrug Resistance in Tumor Cells, edited by I.B. Roninson. Plenum Press: New York, pp. 57–70.

    Google Scholar 

  10. Chen, C.-J, Chin, J.E., Ueda, K., Clark, D.P., Pastan, I., Gottesman, M.M., and Roninson, I.B. 1986. Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell 47: 381–389.

    PubMed  CAS  Google Scholar 

  11. Gros, P., Neriah, Y.B., Croop, J.M., and Housman, D.E. 1986. Isolation and expression of a complementary DNA that confers multidrug resistance. Nature 232: 728–731.

    Google Scholar 

  12. Greenberger, L., Williams, S.S., and Horwitz, S.B. 1987. Biosynthesis of heterogeneous forms of multidrug resistance-associated proteins. J. Biol. Chem. 262: 13685–13689.

    PubMed  CAS  Google Scholar 

  13. Greenberger, L.M., Lothstein, L., Williams, S.S., and Horwitz, S.B. 1988. Distinct P-glycoprotein precursors are overproduced in independently isolated drug-resistant cell lines. Proc. Natl. Acad. Sci. USA 85: 3762–3766.

    PubMed  CAS  Google Scholar 

  14. Richert, N., Aldwin, L., Nitecki, D., Gottesman, M.M., and Pastan, I. 1988. Stability and covalent modification of P-glycoprotein in multidrug-resistant KB cells. Biochemistry 27: 7607–7613.

    PubMed  CAS  Google Scholar 

  15. Greenberger, L.M., Hsu, S.I.-H., Yang, C.-P., Cohen, D., Lothstein, L., Han, E.K.-H., Kirschner, L.S., Peikarz, R.L., Yu, L., and Horwitz, S.B. 1992. A comparison of the structure, function, and expression of P-glycoproteins encoded by mdr1a and mdr1b in mouse. In Drug Resistance as a Biochemical Target in Cancer Chemotherapy, edited by T. Tsuruo and M. Ogawa. Academic Press: San Diego, pp. 63–95.

    Google Scholar 

  16. Hyde, S.C., Emsley, M.J., Hartshorn, M.J., Mimmack, M.M., Gileadi, U., Pearce, S.R., Gallagher, M.P., Gill, D.R., Hubbard, R.E., and Higgins, CF. 1990. Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346: 362–365.

    PubMed  CAS  Google Scholar 

  17. Ames, G.F.L. 1986. Bacterial periplasmic transport systems: structure, mechanism, and evolution. Annu. Rev. Biochem. 55: 397–425.

    PubMed  CAS  Google Scholar 

  18. Yoshimura, A., Kuwazuru, Y., Sumizawa, T., Ishikawa, M., Ikeda, S.-I., Uda, T., and Akiyama, S.-I. 1989. Cytoplasmic orientation and two-domain structure of the multidrug transporter, P-glycoprotein, demonstrated with sequence-specific antibodies. J. Biol. Chem. 264: 16282–16291.

    PubMed  CAS  Google Scholar 

  19. Georges, E., Bradley, G., Gariepy, J., and Ling, V. 1990. Detection of P-glycoprotein isoforms by gene-specific monoclonal antibodies. Proc. Natl. Acad. Sci. USA 87: 152–156.

    PubMed  CAS  Google Scholar 

  20. Georges, E., Tsuruo, T. and Ling, V. 1993. Topology of P-glycoprotein as determined by epitope mapping of MRK-16 monoclonal antibody. J. Biol. Chem. 268: 1792–1798.

    PubMed  CAS  Google Scholar 

  21. Schinkel, A.H., Kemp, S., Dolle, M., Rudenko, G., Wagenaar, E. 1993. N-glycosylation and deletion mutants of the human MDR1 P-glycoprotein. J. Biol. Chem. 268: 7474–7481.

    PubMed  CAS  Google Scholar 

  22. Wu, J., Tisa, L.S., and Rosen, B.P. 1992. Membrane topology of the ArsB protein, the membrane subunit of an anion-translocating ATPase. J. Biol. Chem. 267: 12570–12576.

    PubMed  CAS  Google Scholar 

  23. Zhang, J.-T. and Ling, V. 1991. Study of membrane orientation and glycosylated extracellular loops of mouse P-glycoprotein by in vitro translation. J. Biol. Chem. 266: 18224–18232.

    PubMed  CAS  Google Scholar 

  24. Skach, W.R., Calayag, M.C., and Lingappa, V.R. 1993. Evidence for an alternate model of human P-glycoprotein structure and biogenesis. J. Biol. Chem. 268: 6903–6908.

    PubMed  CAS  Google Scholar 

  25. Bruggemann, E.P., Currier, S.J., Gottesman, M.M., and Pastan, I. 1992. Characterization of the azidopine and vinblastine binding site of P-glycoprotein. J. Biol. Chem. 267: 21020–21026.

    PubMed  CAS  Google Scholar 

  26. Greenberger, L.M. 1993. Major photoaffinity drug labeling sites for iodoaryl azidoprazosin in P-glycoprotein are within, or immediately C-terminal to, transmembrane domains 6 and 12. J. Biol. Chem. 268: 11417–11425.

    PubMed  CAS  Google Scholar 

  27. Roninson, I.B., Chin, J.E., Choi, K., Gros, P., Housman, D.E., Fojo, A., Shen, D., Gottesman, M.M., and Pastan, I. 1986. Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc. Natl. Acad. Sci. USA 83: 4538–4542.

    PubMed  CAS  Google Scholar 

  28. Van der Bliek, A.M., Bass, F., Houte de Lange, T.T., Kooiman, P.M., Van der Velde Koerts, I., and Borst, P. 1987. The human mdr3 gene encodes a novel P-glycoprotein homologue and gives rise to alternatively spliced mRNAs in liver. EMBO J. 6: 3325–3331.

    PubMed  Google Scholar 

  29. Van der Bliek, A.M., Kooiman, P.M., and Borst, P. 1988. Sequence of mdr3 cDNA encoding a human P-glycoprotein. Gene 71: 401–411.

    PubMed  Google Scholar 

  30. Hsu, S., Lothstein, L., and Horwitz, S.B. 1989. Differential overexpression of three mdr gene family members in multidrug-resistant J774.2 mouse cells. J. Biol. Chem. 264: 12053–12062.

    PubMed  CAS  Google Scholar 

  31. Gros, P., Croop, J., and Housman, D. 1986. Mammalian multidrug resistance gene: complete cDNA sequence indicates a strong homology to bacterial transport proteins. Cell 47: 371–380.

    PubMed  CAS  Google Scholar 

  32. Devault, A. and Gros, P. 1990. Two members of the mouse mdr gene family confer multidrug resistance with overlapping but distinct drug specificities. Mol. Cell. Biol. 10: 1652–1663.

    PubMed  CAS  Google Scholar 

  33. Gros, P., Raymond, M., Bell, J., and Housman, D. 1988. Cloning and characterization of a second member of the mouse mdr gene family. Mol. Cell. Biol. 8: 2770–2778.

    PubMed  CAS  Google Scholar 

  34. Schinkel, A., Roelofs. M., and Borst, P. 1991. Characterization of the human MDR3 P-glycoprotein and its recognition by P-glycoprotein-specific monoclonal antibodies. Cancer Res. 51: 2628–2635.

    PubMed  CAS  Google Scholar 

  35. Raymond, M., Rose, E., Housman, D.E., and Gros, P. 1990. Physical mapping, amplification, and overexpression of the mouse mdr gene family in multidrug-resistant cells. Mol. Cell Biol. 10: 1642–1651.

    PubMed  CAS  Google Scholar 

  36. Ng, W.F., Sarangi, F., Zastawny, R.L., Veinot-Drebot, L., and Ling, V. 1989. Identification of members of the P-glycoprotein family. Mol. Cell. Biol. 9: 1224–1232.

    PubMed  CAS  Google Scholar 

  37. Ling, V. and Thompson, L.H. 1973. Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J. Cell. Physiol. 83: 103–116.

    Google Scholar 

  38. Dano, K. 1973. Active outward transport of daunomycin in resistant erhlich ascites tumor cells. Biochim. Biophys. Acta 323: 466–483.

    CAS  Google Scholar 

  39. Skovsgaard, T. 1978. Mechanisms of resistance to daunorubicin in Ehrlich ascites tumor cells. Cancer Res. 38: 1785–1791.

    PubMed  CAS  Google Scholar 

  40. Sirotnak, F.M., Yang, C.-H., Mines, L.S., Oribe, E., and Biedler, J.L. 1986. Markedly altered membrane transport and intracellular binding of vincristine in multidrug-resistant Chinese hamster cells selected for resistance to Vinca alkaloids. J. Cell. Physiol. 126: 266–274.

    PubMed  CAS  Google Scholar 

  41. Beck, W.T., Cirtain, M.C., and Lefko, J.L. 1983. Energy-dependent reduced drug binding as a mechanism of Vinca alkaloid resistance in human leukemic lymphoblasts. Cancer Res. 39: 2070–2076.

    Google Scholar 

  42. Inaba, M.H., Sakurai, Y., and Johnson, R.K. 1979. Active efflux of daunorubicin and adriamycin in sensitive and resistant sublines of P388 leukemia. Cancer Res. 39: 2200–2203.

    PubMed  CAS  Google Scholar 

  43. Ueda, K., Cardarelli, C., Gottesman, M.M., and Pastan, I. 1987. Expression of full-length cDNA for the human ‘MDR1’ gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc. Natl. Acad. Sci. USA 84: 3004–3008.

    PubMed  CAS  Google Scholar 

  44. Guild, B.C., Mulligan, R.C., Gros, P., and Housman, D.E. 1988. Retroviral transfer of a murine cDNA for multidrug resistance confers pleiotropic drug resistance to cells without prior drug selection. Proc. Natl. Acad. Sci. USA 85: 1595–1599.

    PubMed  CAS  Google Scholar 

  45. Castillo, G., Vera, J.C., Yang, C.-P., Horwitz, S.B., and Rosen, O.M. 1990. Functional expression of murine multidrug resistance in Xenopus laevis oocytes. Proc. Natl. Acad. Sci. USA 87: 4737–4741.

    PubMed  CAS  Google Scholar 

  46. Cornwell, M.M., Gottesman, M.M., and Pastan, I.H. 1986. Increased vinblastine binding to membrane vesicles from multidrug resistant KB cells. J. Biol. Chem. 261: 7921–7928.

    PubMed  CAS  Google Scholar 

  47. Horio, M., Gottesman, M.M., and Pastan, I. 1988. ATP-dependent transport of vinblastine in vesicles from human multidrug-resistant cells. Proc. Natl. Acad. Sci. USA 85: 3580–3584.

    PubMed  CAS  Google Scholar 

  48. Cornwell, M.M., Tsuruo, T., Gottesman, M.M., and Pastan, I. 1987. ATP-binding properties of P-glycoprotein from multidrug-resistant KB cells. FASEB 1: 51–54.

    CAS  Google Scholar 

  49. Georges, E., Zhang, J.-T., and Ling, V. 1991. Modulation of ATP and drug binding by monoclonal antibodies against P-glycoprotein. J. Cell. Physiol. 148: 479–484.

    PubMed  CAS  Google Scholar 

  50. Sarkardi, B., Price, E.M., Boucher, R.C., Germann, U.A., and Scarborough, G.A. 1992. Expression of the human multidrug resistance cDNA in insect cells generates a high activity drug-stimulated membrane ATPase. J. Biol. Chem. 267: 4854–4858.

    Google Scholar 

  51. Al-Shawi, M.K. and Senior, A.E. 1993. Characterization of the adenosine triphosphatase activity of Chinese hamster P-glycoprotein. J. Biol. Chem. 268: 4197–4206.

    PubMed  CAS  Google Scholar 

  52. Ambudkar, S.V., Lelong, I.H., Zhang, J., Cardarelli, CO., Gottesman, M.M., and Pastan, I. 1993. Partial purification and reconstitution of the human multidrug-resistance pump: characterization of the drug-stimulatable ATP hydrolysis. Proc. Natl. Acad. Sci. USA 89: 8472–8676.

    Google Scholar 

  53. Doige, C.A., Yu, X., and Sharom, F.J. 1992. ATPase activity of partially purfied P-glycoprotein from multidrug-resistant Chinese hamster ovary cells. Biochim. Biophys. Acta 1109: 149–160.

    CAS  Google Scholar 

  54. Hamada, H. and Tsuruo, T. 1988. Purification of the 170-to 180-kilodalton membrane glycoprotein associated with multidrug resistance. J. Biol. Chem. 263: 1454–1458.

    PubMed  CAS  Google Scholar 

  55. Shimabuku, A.M., Nishimoto, T., Ueda, K., and Romano, T. 1992. P-glycoprotein: ATP hydrolysis by the N-terminal nucleotide binding domain. J. Biol. Chem. 267: 4308–4311.

    PubMed  CAS  Google Scholar 

  56. Safa, A.R. 1988. Photoaffinity labeling of the multidrug-resistance-related P-glycoprotein with photoactive analogs of verapamil. Proc. Natl. Acad. Sci. USA 85: 7187–7191.

    PubMed  CAS  Google Scholar 

  57. Shen, D.-W., Cardarelli, C., Hwang, J., Cornwell, M., Richert, N., Ishii, S.-L, Pastan, I., and Gottesman, M.M. 1986. Multiple drug-resistant human KB carcinoma cells independently selected for high-level resistance to colchicine, adriamycin or vinblastine show changes in expression of specific proteins. J. Biol. Chem. 261: 7762–7770.

    PubMed  CAS  Google Scholar 

  58. Cornwell, M.M., Safa, A.R., Felsted, R.L., Gottesman, M.M., and Pastan, I. 1986. Membrane vesicle from multidrug-resistant human cancer cells contain a specific 150-to 170-kDa protein detected by photoaffinity labeling. Proc. Natl. Acad. Sci. USA 83: 3847–3850.

    PubMed  CAS  Google Scholar 

  59. Ling, V., Kartner, N., Sudo, T., Siminovitch, L., and Riordan, J.R. 1983. Multidrug-resistance phenotype in Chinese hamster ovary cells. Cancer Treat. Rep. 67: 869–874.

    PubMed  CAS  Google Scholar 

  60. Beck, W.T. and Cirtain, M.C. 1982. Continued expression of Vinca alkaloid resistance by CCRF-CEM cells after treatment with tunicamycin or pronase. Cancer Res. 42: 184–189.

    PubMed  CAS  Google Scholar 

  61. Schurr, E., Raymond, M., and Gros, P. 1989. Characterization of the multidrug resistance protein expressed in cell clones stably transfected with the mouse mdr1 cDNA. Cancer Res. 49: 2729–2734.

    PubMed  CAS  Google Scholar 

  62. Staats, J., Marquardt, D., and Center, M.S. 1990. Characterization of a membrane-associated protein kinase of multidrug-resistant HL60 cells which phosphorylates P-glycoprotein. J. Biol. Chem. 265: 4084–4090.

    PubMed  CAS  Google Scholar 

  63. Orr, G.A., Han, E.K.-H., Browne, P.C., Nieves, E., O’Connor, B.M., Yang, C.-P.H., and Horwitz, S.B. 1993. Identification of the major phosphorylation domain of murine mdr1b P-glycoprotein: analysis of the protein kinase A and protein kinase C phosphorylation sites. J. Biol. Chem. 268: 25054–25062.

    PubMed  CAS  Google Scholar 

  64. Mellado, W. and Horwitz, S.B. 1987. Phosphorylation of the multidrug resistance associated glycoprotein. Biochemistry 26: 6900–6904.

    PubMed  CAS  Google Scholar 

  65. Chang, X.-B., Tabcharani, J.A., Hou, Y.-X., Jensen, T.J., Kartner, N., Alon, N., Hanrahan, J.W., and Riordan, J.R. 1993. Protein kinase A (PKA) still activates CFTR chloride channel after mutagenesis of all 10 PKA consensus phosphorylation sites. J. Biol. Chem. 268:11304–11311.

    PubMed  CAS  Google Scholar 

  66. Chambers, T.C., Pohl, J., Raynor, R.L., and Kuo, J.F. 1993. Identification of specific sites in human P-glycoprotein phosphorylated by protein kinase C. J. Biol. Chem. 268: 4592–4595.

    PubMed  CAS  Google Scholar 

  67. Ma, L., Marquardt, D., Takemoto, L., and Center, M. 1991. Analysis of P-glycoprotein phosphorylation in HL60 cells isolated for resistance to vincristine. J. Biol. Chem. 266: 5593–5599.

    PubMed  CAS  Google Scholar 

  68. Sato, W., Yusa, K., Naito, M., and Tsuruo, T. 1990. Staurosporine, a potent inhibitor of C-kinase, enhances drug accumulation in multidrug resistant cells. Biochem. Biophys. Res. Commun. 173: 1252–1257.

    CAS  Google Scholar 

  69. Chaudhary, P.M. and Roninson, I.B. 1992. Activation of MDR1 (P-glycoprotein) gene expression in human cells by protein kinase C agonists. Oncol. Res. 4: 281–290.

    PubMed  CAS  Google Scholar 

  70. Chambers, T.C., Zheng, B., and Kuo, J.F. 1992. Regulation of phorbol ester and protein kinase C inhibitors, and by a protein phosphatase inhibitor (okadaic acid), of P-glycoprotein phosphorylation and relationship to drug accumulation in multidrug-resistant human KB cells. Mol. Pharmacol. 41: 1008–1015.

    PubMed  CAS  Google Scholar 

  71. Chambers, T.C., McAvoy, E.M., Jacobs, J.W., and Eilon, G. 1990. Protein kinase C phosphorylates P-glycoprotein in multidrug resistant human KB carcinoma cells. J. Biol. Chem. 265: 7679–7686.

    PubMed  CAS  Google Scholar 

  72. Posada, J.A., McKeegan, E.M., Worthington, K.F., Morin, M.J., Jaken, S., and Tritton, T.R. 1989. Human multidrug-resistant KB cells overexpress protein kinase C: involvement in drug-resistance. Cancer Commun. 1: 285–292.

    PubMed  CAS  Google Scholar 

  73. Fine, R.L., Patel, J., and Chabner, B.A. 1988. Phorbol esters induce multidrug resistance in human breast cancer cells. Proc. Natl. Acad. Sci. USA 85: 582–586.

    PubMed  CAS  Google Scholar 

  74. Abraham, I., Hunter, R.J., Sampson, K.E., Smith, S., Gottesman, M.M., and Mayo, J.K. 1987. Cyclic AMP-dependent protein kinase regulates sensitivity of cells to multiple drugs. Mol. Cell. Biol. 7: 3098–3106.

    PubMed  CAS  Google Scholar 

  75. Yu, G., Ahmad, S., Aquino, A., Fairchild, C.R., Trepel., J.B., Ohon, S., Suzuki, K., Tsuruo, T., Cowan, K.H., and Glazer, R.I. 1988. Transfection with protein kinase C alpha confers increased multidrug resistance to MCF-7 cells expressing P-glycoprotein. Cancer Commun. 3: 181–189.

    Google Scholar 

  76. Hamada, H., Hagiwara, K.I., Nakajima, T., and Tsuruo, T. 1987. Phosphorylation of the Mr 170,000 and 180,000 glycoprotein specific to multidrug resistant tumor cells: effects of verapamil, trifluoperazine and phorbol ester. Cancer Res. 47: 2860–2865.

    PubMed  CAS  Google Scholar 

  77. Anderson, M.P., Rich, D.P., Gregory, R.J., Smith, A.E., and Welsh, M.J. 1991. Generation of cAMP-activated chloride currents by expression of CFTR. Science 251: 679–682.

    PubMed  CAS  Google Scholar 

  78. Tabcharani, J.A., Chang, X.-B., Riordan, J.R., and Hanrahan, J.W. 1991. Phosphorylation-regulated C1¯ channel in CHO cells stably expressing the cystic fibrosis gene. Nature 352: 628–631.

    PubMed  CAS  Google Scholar 

  79. Kartner, N.H., Hanrahan, J.W., Jensen, T.J., Naismith, A.L., Sun, S., Ackerley, CA., Reyes, E.F., Tsui, L.-C, Rommens, J.M., Bear, C.E., and Riordan, J.R. 1991. Expression of the cystic fibrosis gene in non-epithelial invertebrate cells produces a regulated anion conductance. Cell 64: 681–691.

    PubMed  CAS  Google Scholar 

  80. Drumm, M.L., Pope, H.A., Cliff, W.H., Rommens, J.M., Marvin, S.A., Tsui, L.C., Collins, F.S., Frizzell, R.A., and Wilson, J.M. 1990. Correction of the cystic fibrosis defect in vitro by retrovirus-mediated gene transfer. Cell 62: 1227–1233.

    PubMed  CAS  Google Scholar 

  81. Rommens, J.M., Dho, S., Bear, C.E., Kartner, N., Kennedy, D., Riordan, J.R., Tsui, L., and Foskett, J.K. 1991. cAMP-inducible chloride conductance in mouse flbroblast lines stably expressing the human cystic fibrosis transmembrane conductance regulator. Proc. Natl. Acad. Sci USA 88: 7500–7504.

    PubMed  CAS  Google Scholar 

  82. Bear, C.E., Duguay, F., Naismith, A.L., Kartner, N. Hanrahan, J.W., and Riordan, J.R. 1991. Cl¯ channel activity in Xenopus oocytes expressing the cystic fibrosis gene. J. Biol. Chem. 266: 19142–19145.

    PubMed  CAS  Google Scholar 

  83. Anderson, M.P., Berger, H.A., Rich, D.P., Gregory, R.J., Smith, A.E., and Welsh, M.J. 1991. Nucleoside triphosphates are required to open the CFTR chloride channel. Cell 67: 775–784.

    PubMed  CAS  Google Scholar 

  84. Dechecchi, M.C., Tamanini, A., Berton, G., and Cabrini, G. 1993. Protein kinase C activates chloride conductance in C127 cells stably expressing the cystic fibrosis gene. J. Biol. Chem. 268: 11321–11325.

    PubMed  CAS  Google Scholar 

  85. Picciotto, M.R., Cohn, J.A., Bertuzzi, G., Greengard, P., and Nairn, A.C. 1992. Phosphorylation of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 267: 12742–12752.

    PubMed  CAS  Google Scholar 

  86. Cheng, S.H., Rich, D.P., Marshall, J., Gregory, R.J., Welsh, M.J., and Smith, A.E. 1991. Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66: 1027–1036.

    PubMed  CAS  Google Scholar 

  87. Lothstein, L., Hsu, S.I.-H., Horwitz, S.B., and Greenberger, L.M. 1989. Alternative over-expression of two P-glycoprotein genes is associated with changes in multidrug resistance in a J774.2 cell line. J. Biol. Chem. 264: 16054–16058.

    PubMed  Google Scholar 

  88. Yang, C., Cohen, D., Greenberger, L.M., Hsu, S.I.-H., and Horwitz, S.B. 1990. Differential transport properties of two mdr gene products are distinguished by progesterone. J. Biol. Chem. 265: 10282–10288.

    PubMed  CAS  Google Scholar 

  89. Choi, K., Chen, C.-J., Kriegler, M., and Roninson, I.B. 1988. An altered pattern of cross-resistance in multidrug-resistant human cells results. Cell 53: 519–529.

    PubMed  CAS  Google Scholar 

  90. Safa, A.R., Stern, R.K., Choi, K., Agresti, M., Tamai, I., Mehta, N.D., and Roninson, I.B. 1990. Molecular basis of preferential resistance to colchicine in multidrug-resistant human cells conferred by Serl85 → Val-185 substitution in P-glycoprotein. Proc. Natl. Acad. Sci. USA 87: 7225–7229.

    PubMed  CAS  Google Scholar 

  91. Loo, T.W. and Clarke, D.M. 1993. Functional consequences of proline mutations in the predicted transmembrane domain of P-glycoprotein. J. Biol. Chem. 268: 3143–3149.

    PubMed  CAS  Google Scholar 

  92. Currier, S.J., Kane, S.E., Willingham, M.C., Cardarelli, CO., Pastan, I., and Gottesman, M.M. 1992. Identification of residues in the first cytoplasmic loop of P-glycoprotein involved in the function of chimeric human MDR1-MDR2 transporters. J. Biol. Chem. 267: 25153–25159.

    PubMed  CAS  Google Scholar 

  93. Devine, S.E., Ling, V., and Melera, P.W. 1992. Amino acid substitutions in the sixth transmembrane domain of P-glycoprotein alter multidrug resistance. Proc. Natl. Acad. Sci. USA 89: 4564–4568.

    PubMed  CAS  Google Scholar 

  94. Gros, P., Dhir, R. and Talbot, F. 1991. A single amino acid substitution strongly modulates the activity and substrate specificity of the mouse mdr1 and mdr3 drug efflux pumps. Proc. Natl. Acad. Sci. USA 88: 7289–7293.

    PubMed  CAS  Google Scholar 

  95. Kajiji, S., Talbot, F., Grizzuti, K., Van Dyke-Phillips, V., Agresti, M., Safa, A.R., and Gros, P. 1993. Functional analysis of P-glycoprotein mutants identifies predicted transmembrane domain 11 as a putative drug binding site. Biochemistry 32: 4185–4194.

    PubMed  CAS  Google Scholar 

  96. Devine, S.E., Hussain, A., Davide, J.P., and Melera, P.W. 1991. Full length and alternatively spliced pgp1 transcripts in multidrug-resistant Chinese hamster ovary cells. J. Biol. Chem. 266: 4545–4555.

    PubMed  CAS  Google Scholar 

  97. Tsuruo, T., Iida, H., Tsukagoshi, S., and Sakurai, Y. 1981. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 41: 1967–1972.

    PubMed  CAS  Google Scholar 

  98. Slater, L.M., Sweet, P., Stupecky, M., and Gupta, S. 1986. Cyclosporine A reverses vincristine and daunorubicin resistance in acute lymphocytic leukemia in vitro. J. Clin. Invest. 77: 1405–1408.

    PubMed  CAS  Google Scholar 

  99. Naito, M., Oh-hara, T., Yamazaki, A., Danki, T., and Tsuruo, T. 1992. Reversal of multidrug resistance by an immunosuppressive agent FK506. Cancer Chemother. Pharmacol. 29: 195–200.

    PubMed  CAS  Google Scholar 

  100. Arceci, R.J., Stieglitz, K., and Bierer, B.E. 1992. Immunosuppressants FK506 and rapamycin function as reversal agents of the multidrug resistance phenotype. Blood 80: 1528–1536.

    PubMed  CAS  Google Scholar 

  101. Inaba, M., Fujikura R., Tsukagoshi S., and Sakurai Y. 1981. Restored in vitro sensitivity of adriamycin-and vincristine-resistant P388 leukemia with reserpine. Biochem. Pharmacol. 30: 2191–2194.

    PubMed  CAS  Google Scholar 

  102. Ford, J.M., Prozialeck, W.C., and Hait, W.N. 1989. Structural features determining the activity of phenothiazines and related drugs for inhibition of cell growth and reversal of multidrug resistance. Mol. Pharmacol. 35: 105–115.

    PubMed  CAS  Google Scholar 

  103. Ford, J.M., Bruggemann, E.P., Pastan, I., Gottesman, M.M., and Hait, W.N. 1990. Cellular and biochemical characterization of thioxanthenes for reversal of multidrug resistance in human and murine cell lines. Cancer Res. 50: 1748–1756.

    PubMed  CAS  Google Scholar 

  104. Ford, J.M. and Hait, W.N. 1990. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol. Rev. 42: 155–199.

    PubMed  CAS  Google Scholar 

  105. Yang, C.-P.H., Greenberger, L.M., and Horwitz, S.B. 1991. Reversal of multidrug resistance in tumor cells. In Synergism and Antagonism in Chemotherapy, edited by T.-C. Chou and D.C. Rideout. Academic Press: New York, pp. 311–338.

    Google Scholar 

  106. Tsuruo, T. 1989. Circumvention of drug resistance with calcium channel blockers and monoclonal antibodies. In Drug Resistance in Cancer Therapy, edited by R.F. Ozols. Kluwer Academic Publishers: Boston, pp. 73–95.

    Google Scholar 

  107. Beck, W.T. 1991. Modulators of P-glycoprotein-associated multidrug resistance. In Molecular and Clinical Advances in Anticancer Drug Resistance, edited by R.F. Ozols. Kluwer Academic Publishers: Boston, pp. 151–170.

    Google Scholar 

  108. Boesch, D., Gaveriaux, C., Jachnes, B., Poutier-Manzanedo, A., Bollinger, P., and Loor, F. 1991. In vivo circumvention of P-glycoprotein-mediated multidrug resistance of tumors with SDZ PSC 833. Cancer Res. 51: 4226–4233.

    PubMed  CAS  Google Scholar 

  109. Shinoda, H., Inaba, M., and Tsuruo, T. 1989. In vivo circumvention of vincristine resistance in mice with P388 leukemia using a novel compound, AHC-52. Cancer Res. 49: 1722–1726.

    PubMed  CAS  Google Scholar 

  110. Nagoe, I., Kohno, K., Kikuchi, J., Kuwano, M., Akiyama, S.-L, Kieu, A., Suzuki, K.-I., Yoshida, Y., Cornwell, M.M., Pastan, I., and Gottesman, M.M. 1989. Analysis of structural features of dihydropyridine analogs needed to reverse multidrug resistance and to inhibit photoaffinity labeling of P-glycoprotein. Biochem. Pharmacol. 38: 519–527.

    Google Scholar 

  111. Eliason, J.F., Ramuz, H., Kaufmann, F. 1990. Human multidrug resistant cancer cells exhibit a high degree of selectivity for stereoisomers of verapamil and quinidine. Int. J. Cancer 46: 113–117.

    PubMed  CAS  Google Scholar 

  112. Pirker, R., Keilhauer, G., Raschack, M., Lechner, C., and Ludwig, H. 1990. Reversal of multidrug resistance in human KB cell lines by structural analogs of verapamil. Int. J. Cancer 45: 916–919.

    PubMed  CAS  Google Scholar 

  113. Zamora, J.M., Pearce, H.L., and Beck, W.T. 1988. Physical-chemical properties shared by compounds that modulate multidrug resistance in human leukemic cells. Mol. Pharmacol. 33: 454–462.

    PubMed  CAS  Google Scholar 

  114. Pearce, H.L., Safa, A.R., Bach, N.J., Winter, M.A., Cirtain, M.C., and Beck, W.T. 1989. Essential features of the P-glycoprotein pharmacophore as defined by a series of reserpine analogs that modulate multidrug resistance. Proc. Natl. Acad. Sci. USA 86: 5128–5132.

    PubMed  CAS  Google Scholar 

  115. Yang, C.-P.H., De Pinho, S.G., Greenberger, L.M., Arceci, R.J., and Horwitz, S.B. 1989. Progesterone interacts with P-glycoprotein in multidrug-resistant cells and in the endometrium of the gravid uterus. J. Biol. Chem. 264: 782–788.

    PubMed  CAS  Google Scholar 

  116. Lee, S.C., Deutsch, C., and Beck, W.T. 1988. Comparison of ion channels in multidrug-resistant and-sensitive human leukemic cells. Proc. Natl. Acad. Sci. USA 85: 2019–2023.

    PubMed  CAS  Google Scholar 

  117. Yamashita, N., Hamada, H., Tsuruo, T., and Ogata, E. 1987. Enhancement of voltage-gated Na+ channel current associated with multidrug resistance in human leukemia cells. Cancer Res. 47: 3736–3741.

    PubMed  CAS  Google Scholar 

  118. Akiyama, S.-I., Cornwell, M.M., Kuwano, M., Pastan, I., and Gottesman, M.M. 1988. Most drugs that reverse multidrug resistance also inhibit photoaffinity labelling of P-glycoprotein by a vinblastine analog. Mol. Pharmacol. 33: 144–147.

    PubMed  CAS  Google Scholar 

  119. Kamiwatari, M., Nagata, Y., Kikuchi, H., Yoshimura, A., Sumizawa, T., Shudo, N., Sakoda, R., Seto, K., and Akiyama, S.I. 1989. Correlation between reversing of multidrug resistance and inhibiting of [3H] azidopine photolabeling of P-glycoprotein by newly synthesized dihydropyridine analogues in a human cell line. Cancer Res. 49: 3190–3195.

    PubMed  CAS  Google Scholar 

  120. Beck, W.T., Cirtain, M.C., Glover, C.J., Felsted, R.L., and Safa, A.R. 1988. Effects of indole alkaloids on multidrug resistance and labeling of P-glycoprotein by a photoaffinity analog of vinblastine. Biochem. Biophys. Res. Commun. 153: 959–966.

    CAS  Google Scholar 

  121. Tamai, I. and Safa, A.R. 1990. Competitive interaction of cyclosporins with the Vinca alkaloid-binding site of P-glycoprotein in multidrug-resistant cells. J. Biol. Chem. 265: 16509–16513.

    PubMed  CAS  Google Scholar 

  122. Saeki, T., Udea, K., Tanigawara, Y., Hori, R., and Komano, T. 1993. Human P-glycoprotein transports cyclosporine and FK506. J. Biol. Chem. 268: 6077–6080.

    PubMed  CAS  Google Scholar 

  123. Naito, M. and Tsuruo, T. 1989. Competitive inhibition by verapamil of ATP-dependent high affinity vincristine binding to the plasma membrane of multidrug-resistant K562 cells without calcium ion involvement. Cancer. Res. 49: 1452–1455.

    PubMed  CAS  Google Scholar 

  124. Tamai, I. and Safa, A.R. 1991. Azidopine non-competitively interacts with vinblastine and cyclosporin A binding to P-glycoprotein in multidrug resistant cells. J. Biol. Chem. 266: 16796–16800.

    PubMed  CAS  Google Scholar 

  125. Baas, R., Jongsma, A.P.M., Broxterman, H.J., Arceci, R.J., Housman, D., Scheffer, G.L., Riethorst, A., van Groenigen, M., Nieuwint, A.W.M., and Joenje, H. 1990. Non-P-glycoprotein mediated mechanism for multidrug resistance procedes P-glycoprotein expression during in vitro selection for doxorubicin resistance in a human lung cancer cell line. Cancer Res. 50: 5392–5398.

    PubMed  CAS  Google Scholar 

  126. Nygren, P., Larsson, R., Gruber, A., Peterson, C., and Bergh, J. 1991. Doxorubicin selected multidrug-resistant small cell lung cancer cell lines characterized by elevated cytoplasmic Ca2+ and resistance modulation by verapamil in absence of P-glycoprotein overexpression. Br. J. Cancer. 64: 1011–1018.

    PubMed  CAS  Google Scholar 

  127. Shalinsky, D.R., Slovak, M.L., and Howell, S.B. 1991. Modulation of vinblastine sensitivity by dipyridamole in multidrug resistant fibrosarcoma cells lacking mdr1 expression. Br. J. Cancer 64: 705–709.

    PubMed  CAS  Google Scholar 

  128. Broxterman, HJ., Pinedo, H.M., Kuiper, CM., Schuurhuis, G.L., and Lankelma, J. 1989. Glycolysis in P-glycoprotein-overexpressing human tumor cells: effects of resistance modifying agents. FEBS Lett. 247: 405–410.

    PubMed  CAS  Google Scholar 

  129. Broxterman, H.J., Pinedo, H.M., Kuiper, CM., Kaptein, L.C.M., Schuurhuis, G.L., and Lankelma, J. 1989. Induction by verapamil of a rapid increase in ATP consumption in multidrug-resistant tumor cell. FASEB J. 2: 2278–2282.

    Google Scholar 

  130. Jaffrezou, J.-P., Herbert, J.-M., Levade, T., Gau, M.-N., Chatelain, P., and Laurent, G. 1991. Reversal of multidrug resistance by calcium channel blocker SR33557 without photoaffinity labeling of P-glycoprotein. J. Biol. Chem. 266: 19858–19864.

    PubMed  CAS  Google Scholar 

  131. Azzaria, M., Schurr, E., and Gros, P. 1989. Discrete mutations introduced in the predicted nucleotide-binding sites of the mdr1 gene abolish its ability to confer multidrug resistance. Mol. Cell Biol. 9: 5289–5297.

    PubMed  CAS  Google Scholar 

  132. Dalesmans, W., Barbry, P., Champigny, G., Jallat, S., Dott, K., Dreyer, D., Crystal, R.G., Pavirani, A., Lecocq, J., and Lazdunski, M. 1991. Altered chloride ion channel kinetics associated with the AF508 cystic fibrosis mutation. Nature 354: 526–528.

    Google Scholar 

  133. Gregory, R.J., Rich, D.P., Cheng, S.H., Souza, D.W., Paul, S., Manavalan, P., Anderson, M.P., Welch, M.J., and Smith, A.E. 1991. Maturation and function of cystic fibrosis transmembrane conductance regulator variants bearing mutations in putative nucleotide-binding domains 1 and 2. Mol. Cell. Biol. 11: 3886–3893.

    PubMed  CAS  Google Scholar 

  134. Rich, D.P., Anderson, M.P., Gregory, R.J., Cheng, S.H., Paul, S., Jefferson, D.M., McCann, J.D., Klinger, J.W., Smith, A.E., and Welsh, M.J. 1990. Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells. Nature 347: 358–363.

    PubMed  CAS  Google Scholar 

  135. Berkower, C. and Michaelis, S. 1991. Mutational analysis of the yeast a-factor transporter STE6, a member of the ATP binding cassette (ABC) protein superfamily. EMBO J. 10: 3777–3785.

    PubMed  CAS  Google Scholar 

  136. Shimabuku, A.M., Nishimoto, T., Udea, K., and Komano, T. 1992. P-glycoprotein: ATP hydrolysis by the N-terminal nucleotide-binding domain. J. Biol. Chem. 267: 4308–4311.

    PubMed  CAS  Google Scholar 

  137. Glossmann, H., Ferry, D.R., Striessnig, J., Goll, A., and Moosburger, K. 1987. Resolving the structure of the Ca[su2+ channel by photoaffinity labelling. Trends Pharmacol. Sci. 8: 95–100.

    CAS  Google Scholar 

  138. Greenberger, L.M., Yang, C.-P.H., Gindin, E., and Horwitz, S.B. 1990. Photoaffinity probes for the al-adrenergic receptor and the calcium channel bind to a common domain in P-glycoprotein. J. Biol. Chem. 265: 4394–4401.

    PubMed  CAS  Google Scholar 

  139. Germann, U.A., Willingham, M.C., Pastan, I. and Gottesman, M.M. 1990. Expression of the human multidrug transporter in insect cells by a recombinant bacclovirus. Biochemistry 29: 2295–2303.

    PubMed  CAS  Google Scholar 

  140. Greenberger, L.M., Osanti, C.J., Silva, J.T., and Horwitz, S.B. 1991. Domain mapping of the photoaffinity drug-binding site in P-glycoprotein encoded by mouse mdr1b. J. Biol. Chem. 266: 20744–20751.

    PubMed  CAS  Google Scholar 

  141. Bruggemann, E.P., Germann, U., Gottesman, M., M., and Pastan, I. 1989. Two different regions of P-glycoprotein are photoaffinity labeled by azidopine. J. Biol. Chem. 264: 15483–15488.

    PubMed  Google Scholar 

  142. Anderson, M.P., Gregory, R., Thompson, S., Souza, D.W., Paul, S., Mulligan, R.C., Smith, A.E., and Welsh, M.J. 1991. Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 253: 202–205.

    PubMed  CAS  Google Scholar 

  143. Kelly, A., Powis, S.H., Kerr, L.-A., Mockridge, I., Elliot, T., Bastin, J., Uchanska-Zeigler, B., Zeigler, A., Trowsdale, J., and Townsend, A. 1992. Assembly and function of the two ABC transporter proteins encoded in the human histocompatibility complex. Nature 355: 641–644.

    PubMed  CAS  Google Scholar 

  144. Spies, T., Cerundolo, V., Colonna, M., Cresswell, P., Townsend, A., and De Mars, R. 1992. Presentation of viral antigen by MHC class I molecules is dependent on a putative transporter heterodimer. Nature 355: 644–645.

    PubMed  CAS  Google Scholar 

  145. Striessnig, J., Murphy, B.J., and Catterall, W.A. 1991. The dihydropyridine receptor of the L-type Ca2+ channels: identification of binding domains for (+)-[3H]PN200-110 and [3H]azidopine within the αl subunit. Proc. Natl. Acad. Sci. USA 88: 10769–10773.

    PubMed  CAS  Google Scholar 

  146. Striessnig, J., Glossmann, H., and Catterall, W.A. 1990. Identification of a phenylalkylamine binding region within al subunit of skeletal muscle Ca2+ channels. Proc. Natl. Acad. Sci. USA 87: 9108–9112.

    PubMed  CAS  Google Scholar 

  147. Regulla, S., Schneider, T., Nastaincyzk, W., Meyer, H.E., and Hofmann, F. 1991. Identification of the site of interaction of the dihydropyridine channel blockers nitrendipine and azidopine with the calcium-channel α1 subunit. EMBO J. 10: 45–49.

    PubMed  CAS  Google Scholar 

  148. Nakayama, H., Taki, M., Striessnig, J., Glossmann, H., Catterall, W.A., and Kanoka, Y. 1991. Identification of 1,4-dihydropyridine binding regions within the αl subunit of skeletal muscle Ca2+ channels by photoaffinity labeling with diazipine. Proc. Natl. Acad. Sci. USA 88: 9203–9207.

    PubMed  CAS  Google Scholar 

  149. Catterall, W.A. 1988. Structure and function of voltage-sensitive ion channels. Science 242: 50–64.

    PubMed  CAS  Google Scholar 

  150. Valverde, M.A., Diaz, M., Sepulveda, F.V., Gill, D.R., Hyde, S.C., and Higgins, CF. 1992. Volume-regulated chloride channels associated with human multidrug resistance P-glycoprotein. Nature 355: 830–833.

    PubMed  CAS  Google Scholar 

  151. Gill, D.R., Hyde, S.C., Higgins, CF., Valverde, M.A., Mintenig, G.M., and Sepulveda, F.V. 1992. Separation of drug transport and chloride channel functions of the human multidrug resistance P-glycoprotein. Cell 71: 23–32.

    PubMed  CAS  Google Scholar 

  152. Trezise, A.E.O., Romano, P.R., Gill, D.R., Hyde, S.C, Sepulveda, V., Buchwald, M., and Higgins, C.F. 1992. The multidrug resistance and cystic fibrosis genes have complementary patterns of epithelial expression. EMBO J. 11: 4291–4303.

    PubMed  CAS  Google Scholar 

  153. Wolf, D.C. and Horwitz, S.B. 1992. P-glycoprotein transports corticosterone and is photoaffinity-labeled by the steroid. Int. J. Cancer 52: 141–146.

    PubMed  CAS  Google Scholar 

  154. Sharma, R.C., Inoue, S., Roitelman, J., Schimke, R.T., and Simoni, R.D. 1992. Peptide transport by the multidrug resistance pump. J. Biol. Chem. 267: 5731–5734.

    PubMed  CAS  Google Scholar 

  155. Raymond, M., Gros, P., Whiteway, M., and Thomas, D.Y. 1992. Functional complementation of yeast ste6 by a mammalian multidrug resistance mdr gene. Nature 256: 232–234.

    CAS  Google Scholar 

  156. Kessel, D., Beck, W.T., Kukuruga, D., and Schulz, V. 1991. Characterization of multidrug resistance by fluorescent dyes. Cancer Res. 51: 4665–4670.

    PubMed  CAS  Google Scholar 

  157. Abraham, E.H., Prat, A.G., Gerweck, L., Seneveratne, T., Arceci, R.J., Kramer, R., Guidotti, G., and Cantiello, H.F. 1993. The multidrug resistance (mdr1) gene product functions as an ATP channel. Proc. Natl. Acad. Sci. USA 90: 312–316.

    PubMed  CAS  Google Scholar 

  158. Gerish, G. 1987. Cyclic AMP and other signals controlling cell development and differentiation in Dictyostelium. Annu. Rev. Biochem. 56: 853–879.

    Google Scholar 

  159. Riordan, J.R., Deuchars, K., Kartner, N., Alon, N., Trent, J., and Ling, V. 1985. Amplification of P-glycoprotein genes in multidrug resistant mammalian cell lines. Nature 316: 817–819.

    PubMed  CAS  Google Scholar 

  160. Shen, D.-W., Fojo, A., Chin, J.E., Roninson, I.B., Richert, N., Pastan, I., and Gottesman, M.M. 1986. Human multidrug-resistant cell lines: increased mdr1 expression can precede gene amplification. Science 232: 643–645.

    PubMed  CAS  Google Scholar 

  161. Melera, P.M. and Biedler, J.L. 1991. Molecular and cytogenetic analysis of multidrug resistance-associated gene amplification in Chinese hamster, mouse sarcoma, and human neuroblastoma cells. In Molecular and Cellular Biology of Multidrug Resistance in Tumor Cells, edited by I.B. Roninson. Plenum Press: New York, pp. 117–145.

    Google Scholar 

  162. Trent, J.M. and Callen, D.F. 1991. Chromosomal localization of P-glycoprotein genes in drug-sensitive and drug-resistant human cells. In Molecular and Cellular Biology of Multidrug Resistance in Tumor Cells, edited by I.B. Roninson. Plenum Press: New York, pp. 169–188.

    Google Scholar 

  163. Croop, J.M., Raymond, M., Haber, D., Devault, A., Arceci, R.J., Gros, P., and Housman, D.E. 1989. The three mouse multidrug resistance (mdr) genes are expressed in a tissuespecific manner in normal mouse tissues. Mol. Cell. Biol. 9: 1346–1350.

    PubMed  CAS  Google Scholar 

  164. Bradley, G., Georges, E., and Ling, V. 1990. Sex-dependent and independent expression of the P-glycoprotein isoforms in Chinese hamster. J. Cell. Physiol. 145: 398–408.

    PubMed  CAS  Google Scholar 

  165. Bates, S.E., Mickley, L.A., Chen, Y.-N., Richert, N., Rudick, J., Biedler, J.L., and Fojo, A.T. 1989. Expression of a drug resistance gene lines: modulation by retinoic acid-induced differentiation. Mol. Cell Biol. 9: 43370–4344.

    Google Scholar 

  166. Chin, K.-V., Tanaka, S., Darlington, G., Pastan, I., and Gottesman, M.M. 1990. Heat shock and arsenite increase expression of the MDR (MDR1) gene in human renal carcinoma cells. J. Biol. Chem. 265: 221–226.

    PubMed  CAS  Google Scholar 

  167. Chin, K.-V., Chauhan, S.S., Pastan, I., and Gottesman, M.M. 1990. Regulation of mdr RNA levels in response to cytotoxic drugs in rodent cells. Cell Growth Diff. 1: 361–365.

    PubMed  CAS  Google Scholar 

  168. Chaudhary, P.M. and Roninson, I.B. 1993. Induction of multidrug resistance in human cells by transient exposure to different chemotherapeutic drugs. J. Natl. Cancer Inst. 85: 632–639.

    PubMed  CAS  Google Scholar 

  169. Ueda, K., Pastan, I., and Gottesman, M.M. 1987. Isolation and sequence analysis of the promoter region of the human multidrug-resistance (P-glycoprotein) gene. J. Biol. Chem. 262: 17432–17436.

    PubMed  CAS  Google Scholar 

  170. Hsu, S.-I., Cohen, D., Kirschner, L.S., Lothstein, L., Hartstein, M., and Horwitz, S.B. 1990. Structural analysis of the mouse mdr1a (P-glycoprotein) promoter reveals the basis for differential transcript heterogeneity in multidrug-resistant J774.2 cells. Mol. Cell Biol. 10: 3596–3606.

    PubMed  CAS  Google Scholar 

  171. Cohen, D., Piekarz, R.L., Hsu, S.I.-H., De Pinho, R.A., Carrasco, N., and Horwitz, S.B. 1991. Structural and functional analysis of the mouse mdr1b gene promoter. J. Biol. Chem. 266: 2239–2244.

    PubMed  CAS  Google Scholar 

  172. Kischner, L.S., Greenberger, L.M., Hsu, S.I.-H., Yang, C.-P.H., Cohen, D., Piekarz, R.L., Castillo, G., Han, E.K.-H., Yu, L., and Horwitz, S.B. 1992. Biochemical and genetic characterization of the multidrug resistance phenotype in murine macrophage-like J774.2 cells. Biochem. Phamacol. 43: 77–87.

    Google Scholar 

  173. Kohno, K., Sato, S.-.I, Takano, H., Matsuo, K.-I, and Kuwano, M. 1989. The direct activation of human multidrug resistance gene (MDR1) by anticancer agents. Biochem. Biophys. Acta 165: 1415–1421.

    CAS  Google Scholar 

  174. Chin, K.-V., Udea, K., Pastan, I., and Gottesman, MM. 1992. Modulation of activity of the promoter of the human mdrl gene by ras and p53. Science 255: 459–462.

    PubMed  CAS  Google Scholar 

  175. Uchiumi, T., Kohno, K., Tanimura, H., Matsuo, S., Sato, S., Uchida, Y., and Kuwano, M. 1993. Enhanced expression of human multidrug resistance mdrl gene in response to UV light irradiation. Cell Growth Diff. 4: 147–157.

    PubMed  CAS  Google Scholar 

  176. Uchiumi, T., Kohno, K., Tanimura, H., Hidaka, K., Asakuno, K., Abe, H., Uchida, Y., and Kuwano, M. 1993. Involvement of protein kinase in environmental stress-induced activation of human multidrug resistance (mdr1) gene promoter. FEBS Lett. 326: 11–16.

    PubMed  CAS  Google Scholar 

  177. Cornwell, M.M. and Smith, D.E. 1993. A signal transduction pathway for activation of the mdr1 promoter involves the protooncogene c-raf kinase. J. Biol. Chem. 268: 15347–15350.

    PubMed  CAS  Google Scholar 

  178. Goldsmith, M.E., Madden, M.J., Morrow, C.S., and Cowan, K.H. 1993. A Y-box consensus is required for basal expression of the human multidrug resistance (mdr1) gene. J. Biol. Chem. 268: 5856–5860.

    PubMed  CAS  Google Scholar 

  179. Madden, M.J., Morrow, C.S., Nakagawa, M., Goldsmith, M.E., Fairchild, C.R., and Cowan, K.H. 1993. Identification of 5′ and 3′ sequences involved in the regulation of transcription of the human mdrl gene in vivo. J. Biol. Chem. 268: 8290–8297.

    PubMed  CAS  Google Scholar 

  180. van Groenigen, M., Valentijn, L.J., and Baas, F. 1993. Identification of a functional sequence in the human mdrl promoter. Biochem. Biophys. Acta. 1172: 138–146.

    PubMed  Google Scholar 

  181. Kohno, K., Sato, S.-I., Uchiumi, T., Takano, H., Kato, S., and Kuwano, M. 1990. Tissue-specific enhancer of the human multi-drug-resistance (MDR1) gene. J. Biol. Chem. 265: 19690–19696.

    PubMed  CAS  Google Scholar 

  182. Gant, T.W., Silverman, J.A., and Thorgeirsson, S.S. 1992. Regulation of P-glycoprotein gene expression in hepatocytes cultures and liver cell lines by a trans-acting transcriptional repressor. Nucleic Acids Res. 20: 2841–2846.

    PubMed  CAS  Google Scholar 

  183. Raymond, M. and Gros, P. 1990. Cell-specific activity of cis-acting regulatory elements in the promoter of the mouse multidrug-resistance gene mdrl. Mol. Cell. Biol. 10: 6036–6040.

    PubMed  CAS  Google Scholar 

  184. Piekarz, R.L., Cohen, D., and Horwitz, S.B. 1993. Progesterone regulates the murine multidrug resistance mdr1b gene. J. Biol. Chem. 268: 7613–7616.

    PubMed  CAS  Google Scholar 

  185. Yu, L., Cohen, D., Piekarz, R.L., and Horwitz, S.B. 1993. Three distinct sites in the promoter of the murine multidrug resistance mdr1b gene. J. Biol. Chem. 268: 7520–7526.

    PubMed  CAS  Google Scholar 

  186. Zastawny, R.L. and Ling, V. 1993. Structural and functional analysis of 5′ flanking and intron 1 sequences of the hamster P-glycoprotein pgp1 and pgp2 genes. Biochem. Biophys. Acta 1173: 303–313.

    PubMed  CAS  Google Scholar 

  187. Teeter, L.D., Eckersberg, T., Tsai, Y., and Kuo, M.T. 1991. Analysis of the Chinese hamster P-glycoprotein/multidrug resistance gene pgpl reveals that AP-1 site is essential for full promoter activity. Cell Growth Diff. 2: 429–437.

    PubMed  CAS  Google Scholar 

  188. Lepage, P., Raymond, M., Nepveu, A., and Gros, P. 1993. Transcriptional activation of the mouse mdr3 gene coincides with the appearance of novel transcription initiation sites in multidrug resistant P388 tumor cells. Cancer Res. 53: 1657–1664.

    PubMed  CAS  Google Scholar 

  189. Danks, M.K., Yalowich, J.C., Beck, W.T. 1987. Atypical multiple drug resistance in a human leukemic cell line selected for resistance to teniposide (VM-26). Cancer Res. 47: 1297–1301.

    PubMed  CAS  Google Scholar 

  190. Gilsson, B., Gupta, R., Hodges, P., and Ross, W. 1986. Cross-resistance to intercalating agents in an epipodphyllotoxin-resistant Chinese hamster ovary cell line: evidence for a common intracellular target. Cancer Res. 46: 1939–1942.

    Google Scholar 

  191. Takano, H., Kohno, K., Ono, M., Uchida, Y., and Kuwano, M. 1991. Increased phos-phorylation of DNA topoisomerase II in etoposide-resistant mutants of human cancer KB cells. Cancer Res. 51: 3951–3957.

    PubMed  CAS  Google Scholar 

  192. Odaimi, M., Andersson, B.S., McCredie, K.B., and Beran, M. 1986. Drug sensitivity and cross-resistance of the 4′-(9-acridinylamino) methanesulfon-m-anisidide-resistant subline of HL-60 human leukemia. Cancer Res. 46: 3330–3333.

    PubMed  CAS  Google Scholar 

  193. Gilsson, B., Gupta, R., Smallwood-Kentro, S., and Ross, W. 1986. Characterization of acquired epipodophyllotoxin resistance in a Chinese hamster ovary cell line: loss of drug stimulated DNA cleavage activity. Cancer Res. 46: 1934–1938.

    Google Scholar 

  194. Zwelling, L.A., Hinds, M., Chan, D., Mayes, J., Sie, K.L., Parker, E., Silberman, L., Rodcliffe, A., Beran, M., and Blick, M. 1989. Characterization of an amsacrine-resistant line of human leukemia cells. J. Biol. Chem. 264: 16411–165420.

    PubMed  CAS  Google Scholar 

  195. Drake, F.H., Hofmann, G.A., Bartus, H.F., Mattern, M.R., Crooke, S.T., and Mirabelli, C.K. 1989. Biochemical and pharmacological properties of pl70 and pl80 forms of topoisomerase II. Biochemistry 28: 8154–8160.

    PubMed  CAS  Google Scholar 

  196. Chung, T.D.Y., Drake, F.H., Tan, K.B., Per, S.R., Crooke, S.T., and Mirabelli, C.K. 1989. Characterization and immunological identification of cDNA clones encoding two human DNA topoisomerase II isoenzymes. Proc. Natl. Acad. Sci. USA 86: 9431–9435.

    PubMed  CAS  Google Scholar 

  197. Cole, S.P.C., Chandra, E.R., Dicke, F.P., Gerlach, J.H., and Mirski, S.E.L. 1991. Non-glycoprotein-mediated multidrug resistance in a small cell lung cancer cell line: evidence for decreased susceptibility to drug-induced DNA damage and reduced levels of topoisomerase II. Cancer Res. 51: 3345–3352.

    PubMed  CAS  Google Scholar 

  198. Sullivan, D.M., Eskildsen, L.A., Groom, K.R., Webb, CD., Latham, M.D., Martin, A.W., Wellhausen, S.R., Kroeger, P.E., and Rowe, T.C. 1993. Topoisomerase II activity involved in cleaving DNA into topological domains is altered in a mutliple drug-resistant Chinese hamster ovary cell line. Mol. Pharmacol. 43: 207–216.

    PubMed  CAS  Google Scholar 

  199. Danks, M.K., Schmidt, C.A., Cirtain, M.C., Suttle, P., and Beck, W.T. 1988. Altered catalytic activity of and DNA cleavage by DNA topoisomerase II from human leukemic cells selected for resistance to VM-26. Biochemistry 27: 8861–8869.

    PubMed  CAS  Google Scholar 

  200. Webb, C.D., Latham, M.D., Lock, R.B., and Sullivan, D.M. 1991. Attenuated topoisomerase II content directly correlates with a low level of drug resistance in a Chinese hamster ovary cell line. Cancer Res. 51: 6543–6549.

    PubMed  CAS  Google Scholar 

  201. Friche, E., Danks, M., Schmidt, CA., and Beck, W.T. 1991. Decreased DNA topoisomerase II in daunorubicin-resistant ehrlich ascites tumor cells. Cancer Res. 51: 4213–4218.

    PubMed  CAS  Google Scholar 

  202. Zwelling, L.A., Slovak, M.L., Doroshow, J.H., Hinds, M., Chan, D., Parker, E., Mayes, J., Sie, K.L., Meltzer, P.S., and Trent, J.M. 1990. HT1080/DX4: a p-glycoprotein-negative human fibrosarcoma cell line exhibiting resistance to topoisomerase H-reactive drugs despite the presence of a drug-sensitive topoisomerase. J. Natl. Cancer Inst. 82: 1553–1561.

    PubMed  CAS  Google Scholar 

  203. Sugawara, I., Iwahashi, T., Okamoto, K., Sugimoto, Y., Ekimoto, H., Tsuruo, T., Ikeuchi, T., and Mori, S. 1991. Characterization of an etoposide-resistant human K562 cell line, K/eto. Jpn. J. Cancer Res. 82: 1035–1043.

    PubMed  CAS  Google Scholar 

  204. Deffie, A.M., Bosman, D.J., and Goldenberg, G.J. 1989. Evidence for a mutant allele of the gene for DNA topoisomerase II in adriamycin-resistant P388 murine leukemia cells. Cancer Res. 49: 6879–6882.

    PubMed  CAS  Google Scholar 

  205. Harker, W.G., Slade, D.L., Drake, F.H., and Parr, R.L. 1991. Mitoxantrone resistance in HL-60 leukemia cells: reduced nuclear topoisomerase II catalytic activity and drug-induced DNA cleavage in association with reduced expression of the topoisomerase IIß form. Biochemistry 30: 9953–9961.

    PubMed  CAS  Google Scholar 

  206. Bugg, B.Y., Danks, M.K., Beck, W.T., and Suttle, D.P. 1991. Expression of a mutant DNA topoisomerase II in CCRF-CEM human leukemic cells selected fro resistance to teniposide. Proc. Natl. Acad. Sci. USA 88: 7654–7658.

    PubMed  CAS  Google Scholar 

  207. Hinds, M., Deisseroth, K., Mayes, J., Altschuler, E., Jansen, R., Ledley, F.D., and Zwelling, L.A. 1991. Identification of a point mutation in the topoisomerase II gene from a human leukemia cell line containing an amsacrine-resistant form of topoisomerase II. Cancer Res. 51: 4729–4731.

    PubMed  CAS  Google Scholar 

  208. Danks, M.K., Warmoth, M.R., Friche, E., Granzen, B., Bugg, B.Y., Harker, W.G., Zwelling, L.A., Futscher, B.W., Suttle, D.P., and Beck, W.T. 1993. Single-strand conformational polymorphism analysis of the M(r)170,000 isozyme of DNA topoisomerase II in human tumor cells. Cancer Res. 53: 1373–1379.

    PubMed  CAS  Google Scholar 

  209. Lee, M.S., Wang, J.C., and Beran, M. 1992. Two independent amsacrine-resistant human myeloid leukemia cell lines share an identical point mutation in the 170 kDa form of human topoisomerase II. J. Mol. Biol. 223: 837–843.

    PubMed  CAS  Google Scholar 

  210. Fernendes, DJ., Danks, M.K., and Beck, W.T. 1990. Decreased nuclear matrix DNA topoisomerase II in human leukemia cells resistant to VW-26 and m-AMSA. Biochemistry 29: 4235–4241.

    Google Scholar 

  211. Kamath, N., Graboswski, D., Ford, J., Kerrigon, D., Pommier, Y., and Ganapathi, R. 1992. Overexpression of P-glycoprotein and alteration in topoisomerase II in P388 mouse leukemia cells selected in vivo for resistance to mitoxantrone. Biochem. Pharmacol. 44: 937–945.

    PubMed  CAS  Google Scholar 

  212. Sehested, M., Bindslev, N., Demant, E.J.F., Skovsgaard, T., and Jensen, P.B. 1989. Daunorubicin and vincristine binding to plasma membrane vesicles from daunorubicin-resistant and wild type Ehrlich ascites tumor cells. Biochem. Pharmacol. 38: 3017–3027.

    PubMed  CAS  Google Scholar 

  213. Friche, E., Skovsgaard, T., and Nissen, N.I. 1987. Effect of verapamil on daunorubicin accumulation in Ehrlich ascites tumor cells. Cancer Chemother. Pharmacol. 19: 35–39.

    PubMed  CAS  Google Scholar 

  214. Dalton, W.S., Cress, A.E., Alberts, D.S., and Trent, J.M. 1988. Cytogenetic and phenotypic analysis of a human colon carcinoma cell line resistant to mitoxantrone. Cancer Res. 48: 1882–1888.

    PubMed  CAS  Google Scholar 

  215. Taylor, C.W., Dalton, W.S., Parrish, P.R., Gleason, Bellamy, W.T., Thompson, F.H., Roe, D.J., and Trent, J.M. 1991. Different mechanisms of decreased drug accumulation in doxorubicin and mitoxantrone resistant variants of the MCF7 human breast cancer cell line. Br. J. Cancer 63: 923–929.

    PubMed  CAS  Google Scholar 

  216. Nakagawa, M., Schneider, E., Dixon, K.H., Horton, J., Kelley, K., Morrow, C., and Cowan, K.H. 1992. Reduced intracellular drug accumulation in the absence of P-glycoprotein (mdr1) overexpression in mitoxantrone-resistant human MCF-7 breast cancer cells. Cancer Res. 52: 6175–6181.

    PubMed  CAS  Google Scholar 

  217. Tsuruo, T., Kawabata, H., Nagumo, N., Iida, H., Kitatani, Y., Tsukagoshi, S., and Sakurai, Y. 1985. Potentiation of antitumor agents by calcium channel blockers with special reference to cross-resistance patterns. Cancer Chemother. Pharmacol. 15: 16–19.

    PubMed  CAS  Google Scholar 

  218. Slovak, M.L., Hoeltge, G.A., Dalton, W.S., and Trent, J.M. 1988. Pharmacological and biological evidence for differing mechanisms of doxorubicin resistance in two human cell lines. Cancer Res. 48: 2793–2797.

    PubMed  CAS  Google Scholar 

  219. McGrath, T. and Center, M.S. 1987. Adriamycin resistance in HL60 cells in the absence of detectable P-glycoprotein. Biochem. Biophys. Res. Commun. 145: 1171–1176.

    CAS  Google Scholar 

  220. Cass, C.E., Janowsak-Weiczorek, A., Lynch, M.A., Sheinin, H., Hindenburg, A.A., and Beck, W.T. 1989. Effect of duration of exposure to verapamil on vincristine activity against multidrug resistant human leukemic cell lines. Cancer Res. 49: 5798–5804.

    PubMed  CAS  Google Scholar 

  221. Bhalla, K., Hindenburg, A., Taub, R.N., and Grant, S. 1985. Isolation and characterization of an anthracycline-resistant human leukemic cell line. Cancer Res. 45: 3657–3662.

    PubMed  CAS  Google Scholar 

  222. Eijdems, E.W.H.M., Borst, P., Jongsma, A.P.M., de Jong, S., de Vries, E.G.E., van Groenigen, M., Versantvoort, C.H.M., Nieuwint, A.W.M., and Baas, F. 1992. Genetic transfer of non-P-glycoprotein-mediated multidrug resistance (MDR) in somatic cell fusion: dissection of a compound MDR phenotype. Proc. Natl. Acad. Sci. USA 89: 3498–3502.

    PubMed  CAS  Google Scholar 

  223. Cole, S.P.C., Bhardwaj, G., Gerlach, J.H., Mackie, J.E., Grant, C.E., Almquist, K.C., Stewart, A.J., Kurz, E.U., Duncan, A.M.V., and Deeley, R.G. 1993. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258: 1650–1654.

    Google Scholar 

  224. Krishnamachary, N. and Center, M.S. 1993. The MRP gene associated with non-P-glycoprotein multidrug resistance encodes a 190-kDa membrane bound glycoprotein. Cancer Res. 53: 3658–3661.

    PubMed  CAS  Google Scholar 

  225. Hindenburg, A.A., Baker, M.A., Gleyzer, E., Stewart, V.J., Case, N., and Taub, R.N. 1987. Effect of verapamil and other agents on the distribution of anthracycliens and on reversal of drug resistance. Cancer Res. 47: 1421–1425.

    PubMed  CAS  Google Scholar 

  226. Hindenburg, A.A., Gervasoni, J.E. Jr., Krishna, S., Stewart, V.J., Rosado, M., Lutzky, J., Bhalla, K., Baker, M.A., and Taub, R.N. 1989. Intracellular distribution and pharmacokinetics of daunorubicin in anthracycline-sensitive and-resistant HL-60 cells. Cancer Res. 49: 4607–4614.

    PubMed  CAS  Google Scholar 

  227. Gervasoni Jr., J.E., Fields, S.Z., Kishna, S., Baker, M.A., Rosado, M., Thuraissmy, K., Hindenburg, A.A., and Taub, R.N. 1991. Subcellular distribution of daunorubicin in P-glycoprotein positive and-negative drug-resistant cell lines using laser-assisted confocal microscopy. Cancer Res. 51: 4955–4963.

    PubMed  CAS  Google Scholar 

  228. Dietel, M., Arps, H., Lage, H., and Niendorf, A. 1990. Membrane vesicle formation due to acquired mitoxantrone resistance in human gastric carcinoma cell line EPG85-257. Cancer Res. 50: 6100–6106.

    PubMed  CAS  Google Scholar 

  229. Meyers, M.B. and Biedler, J.L. 1981. Increased synthesis of a low molecular weight protein in vincristine-resistant cells. Biochem. Biophys. Res. Commun. 99: 228–235.

    CAS  Google Scholar 

  230. Meyers, M.B., Spengler, B.A., Chang, T.-D., Melera, P.W., and Biedler, J.L. 1985. Gene amplification-associated cytogenetic aberrations and protein changes in vincristine-resistant Chinese hamster, mouse, and human cells. J. Cell Biol. 100: 588–597.

    PubMed  CAS  Google Scholar 

  231. Martinsonn, T., Dahllof, B., Wettergren, Y., Leffler, H., and Levan, G. 1985. Pleiotropic drug resistance and gene amplification in a SEWA mouse tumor cell line. Exp. Cell Res. 158: 382–394.

    Google Scholar 

  232. Gudkov, A.V., Massino, J.S., Chernova, O.B., and Kopnin, B.P. 1985. Gene amplification in Djungarian hamster cell lines possessing decreased plasma membrane permeability for colchicine and some other drugs. Chromosoma 92: 16–24.

    PubMed  CAS  Google Scholar 

  233. Koch, G., Smith, M., Twentyman, P., and Wright, K. 1986. Identification of a novel calcium-binding protein (CP22) in multidrug resistant murine and hamster cells. FEBS Lett. 195: 275–279.

    PubMed  CAS  Google Scholar 

  234. Van der Bliek, A.M., Meyers, M.B., Biedler, J.L., Hes, E., and Borst, P. 1986. A 22-kd protein (sorcin/V19) encoded by an amplified gene in multidrug resistant cells, is homologous to the calcium-binding light chain of calpain. EMBO J. 5: 3201–3208.

    PubMed  Google Scholar 

  235. Scheper, R.J., Broxterman, H.J., Scheffer, G.L., Kaaijk, P., Dalton, W.S., van Heijningen, T.H.M., van Kalken, C.K., Slovak, M.L., de Vries, E.G.E, van der Valk, P., Meijer, C.J.L.M., and Pinedo, H. 1993. Overexpression of a Mr 110,000 vesicular protein in non P-glycoprotein-mediated multidrug resistance. Cancer Res. 53: 1475–1479.

    PubMed  CAS  Google Scholar 

  236. Chen, Y.-N., Mickley, L.A., Schwartz, A.M., Acton, E., Hwang, J., and Fojo, A.T. 1990. Characterization of adriamycin-resistant human breast cancer cells which display over-expression of a novel resistance-related membrane protein. J. Biol. Chem. 265: 10073–10080.

    PubMed  CAS  Google Scholar 

  237. Sugimoto, Y., Hamada, H., Tsukahara, S., Noguchi, K., Yamaguchi, K., Sato, M., and Tsuruo, T. 1993. Molecular cloning and characterization of the complementary DNA for the Mr 85,000 protein overexpressed in adriamycin-resistant human tumor cells. Cancer Res. 53: 2538–2543.

    PubMed  CAS  Google Scholar 

  238. Meister, A. 1988. Glutathione metabolism and its selective modification. J. Biol. Chem. 264: 17205–17208.

    Google Scholar 

  239. Batist, G., Tulpule, A., Sinha, B.K., Katki, A.G., Myers, C.E., and Cowan, K.H. 1986. Overexpression of a novel anionic glutathione transferase in multidrug-resistant human breast cancer cells. J. Biol. Chem. 261: 15544–15549.

    PubMed  CAS  Google Scholar 

  240. Kramer, R.A., Zakher, J., and Kim, G. 1988. Role of the glutathione redox cycle in acquired and de novo multidrug resistance. Science 24: 694–697.

    Google Scholar 

  241. Moscow, J.A., Townsend, A.J., and Cowan, K.H. 1989. Elevation of π class glutathione-S-transferase activity in human breast cancer cells by transfection of the GST-π gene and its effect on sensitivity to toxins. Mol. Pharmacol. 36: 22–28.

    PubMed  CAS  Google Scholar 

  242. Fairchild, C.R., Moscow, J.A., O’Brien, E.O., and Cowan, K.H. 1990. Multidrug resistance in cells transfected with human genes encoding a variant P-glycoprotein and glutathione S-transferase-π. Mol. Pharmacol. 37: 801–809.

    PubMed  CAS  Google Scholar 

  243. Ford, J.M., Yang, J.-M., and Hait, W.T. 1991. Effect of buthionine sulfoximine on toxicity of verapamil and doxorubicin to multidrug resistant cells and to mice. Cancer Res. 51: 67–72.

    PubMed  CAS  Google Scholar 

  244. Durse, L., Minnaugh, E.G., Myers, C.E., and Sinha, B.K. 1989. Potentiation of doxorubicin cytotoxicity by buthionine sulfoximine in multidrug resistant human breast tumor cells. Cancer Res. 49: 511–515.

    Google Scholar 

  245. Roy, S.N. and Horwitz, S.B. 1985. A phosphoglycoprotein associated with taxol resistance in J774.2 cells. Cancer Res. 45: 3856–3863.

    PubMed  CAS  Google Scholar 

  246. Peterson, R.H.F., Meyers, M.B., Spengler, B.A., and Biedler, J.L. 1983. Alteration of plasma membrane glycopeptides and gangliosides of Chinese hamster cells accompanying development of resistance to daunorubicin and vincristine. Cancer Res. 43: 222–228.

    PubMed  CAS  Google Scholar 

  247. Marsh, W. and Center, M.S. 1987. Adriamycin resistance in HL60 cells and accompanying modification of a surface membrane protein contained in drug-sensitive cells. Cancer Res. 47: 5080–5086.

    PubMed  CAS  Google Scholar 

  248. Juliano, R.L. and Ling, V. 1976. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochem. Biophys. Acta 455: 152–162.

    PubMed  CAS  Google Scholar 

  249. Peterson, R.H.F. and Biedler, J.L. 1978. Plasma membrane proteins and glycoproteins from Chinese hamster cells sensitive and resistant to actinomycin D. J. Supramol. Struct. 9: 289–298.

    PubMed  CAS  Google Scholar 

  250. Gupta, R.S., Murray, W., and Gupta, R. 1988. Cross-resistance pattern forwards anticancer drugs of a human carcinoma multidrug-resistance cell line. Br. J. Cancer 58: 441–447.

    PubMed  CAS  Google Scholar 

  251. Gupta, R.S., Gupta, R., Eng, B., Lock, R.B., Ross, W.W., Hertzberg, R.P., Caranfa, M.J., and Johnson, R.K. 1988. Camptothecin-resistance mutants of Chinese hamster ovary cells containing a resistant form of topoisomerase I. Cancer Res. 48: 6404–6410.

    PubMed  CAS  Google Scholar 

  252. Chen, A.Y., Yu, C., Potmesil, M., Wall, M.E., Wani, M.C., and Lui, L.F. 1991. Camptothecin overcomes MDR1-mediated resistance in human KB carcinoma cells. Cancer Res. 51: 6039–6044.

    PubMed  CAS  Google Scholar 

  253. Qian, X.-D. and Beck, W.T. 1990. Binding of an optically pure photoaffinity analogue of verapamil, LU-49888, to P-glycoprotein from multidrug-resistant human leukemic cell lines. Cancer Res. 50: 1132–1137.

    PubMed  CAS  Google Scholar 

  254. Safa, A.R., Glover, C.J., Meyers, M.B., Biedler, J.L., and Felsted, R.L. 1986. Vinblastine photoaffinity labeling of a high molecular weight surface membrane glycoprotein specific for multidrug-resistant cells. J. Biol. Chem. 261: 6137–6140.

    PubMed  CAS  Google Scholar 

  255. Safa, A.R., Mehta, N.D., and Agresti, M. 1989. Photoaffinity labeling of P-glycoprotein in multidrug resistant cells with photoactive analogs of colchicine. Biochem. Biophys. Res. Commun. 162: 1402–1408.

    CAS  Google Scholar 

  256. Busche, R., Tummler, B., Cano-Gauci, D.F., and Riordan, J.R. 1989. Equilibrium, kinetic and photoaffinity labeling studies of daunomycin binding to P-glycoprotein-containing membranes of multidrug-resistant Chinese hamster ovary cells. Eur. J. Biochem. 183: 189–197.

    PubMed  CAS  Google Scholar 

  257. Busche, R., Tummler, B., Riordan, J.R., and Cano-Gauci, D.F., 1989. Preparation and utility of a radioiodinated analogue of daunomycin in the study of multidrug resistance. Mol. Pharmacol. 35: 414–421.

    PubMed  CAS  Google Scholar 

  258. Safa, A.R., Glover, Sewell, J.L., Meyers, M.B., Biedler, J.L., and Felsted, R.L. 1987. Identification of the multidrug resistance-related membrane glycoprotein as an acceptor for calcium channel blockers. J. Biol. Chem. 262: 7884–7888.

    PubMed  CAS  Google Scholar 

  259. Yang, C.-P.H., Mellado, W., and Horwitz, S.B. 1988. Azidopine photoaffinity labeling of the multidrug resistance-associated protein. Biochem. Pharmacol. 37: 1417–1421.

    PubMed  CAS  Google Scholar 

  260. Qian, X.-D. and Beck, W.T. 1990. Progesterone photoaffinity labels P-glycoprotein in multidrug-resistant human leukemic lymphoblasts. J. Biol. Chem. 365: 8753–8756.

    Google Scholar 

  261. Safa, A.R., Agresti, M., Tamai, I., Mehta, N.D., and Vahabi, T.I. 1990. The alpha 1-adrenergic photoaffinity probe [1251]arylazidoprazosin binds to a specific peptide of P-glycoprotein in multidrug-resistant cells. Biochem. Biophys. Res. Commun. 166: 259–266.

    PubMed  CAS  Google Scholar 

  262. Foxwell, B.M.J., Mackie, A., Ling, V., and Ryffel, B. 1989. Identification of the multidrug resistance-related P-glycoprotein as a cyclosporine binding protein. Mol. Pharmacol. 36: 543–546.

    PubMed  CAS  Google Scholar 

  263. Morris, D.I., Speicher, L.A., Ruoho, A.E., Tew, K.D., and Seamon, K.B. 1991. Interaction of forskolin with the P-glycoprotein multidrug transporter. Biochemistry 30: 8371–8379.

    PubMed  CAS  Google Scholar 

  264. Grant, C.E., Valdimarsson, G., Hipfner, D.R., Almquist, K.C., Cole, S.P.C., and Deely, R.G. 1994. Overexpression of multidrug resistance-associated protein (MRP) increases resistence to natural product drugs. Cancer Res. 54: 357–361.

    PubMed  CAS  Google Scholar 

  265. Cohen, D., Yu, L., Rzepka, R. and Horwitz, S.B. 1994. Identification of two nuclear protein binding sites and their role in the regulation of the murine multidrug resistance mdr 1a promoter. DNA Cell Biol. 13: 641–649.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Greenberger, L.M., Cohen, D., Horwitz, S.B. (1994). In vitro models of multiple drug resistance. In: Goldstein, L.J., Ozols, R.F. (eds) Anticancer Drug Resistance. Cancer Treatment and Research, vol 73. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2632-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2632-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6129-9

  • Online ISBN: 978-1-4615-2632-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics