Skip to main content

P-glycoprotein homologues

  • Chapter
Anticancer Drug Resistance

Part of the book series: Cancer Treatment and Research ((CTAR,volume 73))

Abstract

Multidrug resistance (MDR) is defined by the simultaneous acquisition of cellular resistance to a broad range of cytotoxic compounds bearing little or no structural and functional homologies [1–5]. MDR is caused in cultured cells in vitro [6–9] and in tumor cells in vivo [10–12] by the overexpression of P-glycoprotein (Pgp) (reviewed in [13]). The overexpression of Pgp in cultured cells leads to a decrease in intracellular accumulation of drugs concomitant with a commensurate increase in drug efflux, both strictly ATP dependent [13]. Pgp has been shown to bind photoactivatable analogues of ATP [14,15], and drug analogues [16-18], and has been demonstrated to possess ATPase activity [19]. These combined biochemical analyses have led to the proposition that Pgp functions as an ATP-driven drug efflux pump to reduce the intracellular accumulation of drugs in resistant cells. Pgp has been found to be encoded by a small family of closely related genes, designated mdr, which includes two members in humans (MDR1, MDR2) and three members in rodents (mdr1, mdr2, mdr3) for which full-length cDNA clones have been obtained [20–25]. Nucleotide and predicted amino acid sequence analyses of these clones indicate that they encode highly homologous proteins sharing the same length, between 70% and 85% sequence identity, and identical predicted secondary structures [20,22]. In the mouse, the prototype Pgp (1276 residues) is formed by two sequence homologous halves, each encoding six predicted membrane-spanning (™) domains and a nucleotide-binding (NB) fold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moscow, J.A. and Cowan, K.H. 1988. Multidrug Resistance. J. Natl. Cancer Inst. 80: 14–16.

    PubMed  CAS  Google Scholar 

  2. Gupta, R.S., Murray, W., and Gupta, R. 1988. Cross resistance patterns towards anticancer drugs of a human carcinoma multidrug-resistant cell line. Br. J. Cancer 58: 441–447.

    PubMed  CAS  Google Scholar 

  3. Zamora, J.M., Pearce, H.L., and Beck, W. 1988. Physico-chemical properties shared by compounds that modulate multidrug resistance in human leukemic cells. Mol. Pharmacol. 33: 454–462.

    PubMed  CAS  Google Scholar 

  4. Pearce, H.L., Safa, A.R., Bach, N.J., Winter, M.A., Cirtain, M.C., and Beck, W.T. 1989. Essential features of the P-glycoprotein pharmacophore as defined by a series of reserpine analogs that modulate multidrug resistance. Proc. Natl. Acad. Sci. USA 86: 5128–5132.

    PubMed  CAS  Google Scholar 

  5. Beck, W.T. 1990. Multidrug resistance and its circumvention. Eur. J. Cancer 26: 513–515.

    PubMed  CAS  Google Scholar 

  6. Biedler, J.L. and Riehm, H. 1970. Cellular resistance to actinomycin D in Chinese hamster cells in vitro: Cross-resistance, radioautographic, and cytogenetic studies. Cancer Res. 30: 1174–1184.

    PubMed  CAS  Google Scholar 

  7. Ling, V. and Thompson, L.H. 1974. Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J. Cell. Physiol. 83: 103–111.

    PubMed  CAS  Google Scholar 

  8. Fojo, A., Akiyama, S., Gottesman, M.M., and Pastan, I. 1985. Reduced drug accumulation in multiple drug-resistant human KB carcinoma cell lines. Cancer Res. 45: 3002–3007.

    PubMed  CAS  Google Scholar 

  9. Lemontt, J., Azzaria, M., and Gros, P. 1988. Increased mdr gene expression and decreased drug accumulation in multidrug-resistant human melanoma cells. Cancer Res. 48: 6348–6353.

    PubMed  CAS  Google Scholar 

  10. Chan, H.S.L., Thorner, P.S., Haddad, G., and Ling, V. 1990. Immunohistochemical detection of P-glycoprotein: prognostic correlation in soft tissue sarcoma of childhood. J. Clin. Oncol. 8: 689–704.

    PubMed  CAS  Google Scholar 

  11. Nooter, K. and Herweijer, H. 1991. Multidrug resistance (mdr) genes in human cancer. Br. J. Cancer 63: 663–669.

    PubMed  CAS  Google Scholar 

  12. Chan, H.S.L., Haddad, G., Thorner, P.S., DeBoer, G., Lin, Y.P., Ondrusek, N., Yeger, H., and Ling, V. 1991. P-glycoprotein expression as a predictor of the outcome of therapy for neuroblastoma. N. Engl. J. Med. 325: 1608–1614.

    PubMed  CAS  Google Scholar 

  13. Endicott, J.A. and Ling, V. 1989. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu. Rev. Biochem. 58: 137–171.

    PubMed  CAS  Google Scholar 

  14. Cornwell, M.M., Tsuruo, T., Gottesman, M.M., and Pastan, I. 1987. ATP-binding properties of P-glycoprotein from multidrug resistant KB cells. FASEB. J. 1: 51–54.

    PubMed  CAS  Google Scholar 

  15. Schurr, E., Raymond, M., Bell, J.C., and Gros, P. 1989. Characterization of the multidrug resistance protein expressed in cell clones stably transfected with the mouse mdr1 cDNA. Cancer Res. 49: 2729–2734.

    PubMed  CAS  Google Scholar 

  16. Cornwell, M.M., Safa, A.R., Felsted, R.L., Gottesman, M.M., and Pastan, I. 1989. Membrane vesicles from multidrug resistant human cancer cells contain a specific 150-to 170-kDa protein detected by photoaffinity labeling. Proc. Natl. Acad. Sci. USA, 83: 3847–3850.

    Google Scholar 

  17. Safa, A.R., Glover, C.J., Meyers, M.B., Biedler, J.L., and Felsted, R.L. 1986. Vinblastine photoaffinity labeling of a high molecular weight surface membrane glycoprotein specific for multidrug-resistant cells. J. Biol. Chem. 261: 6137–6140.

    PubMed  CAS  Google Scholar 

  18. Safa, A.R., Metha, N.D., and Agresti, M. 1989. Photoaffinity labelling of P-glycoprotein is multidrug resistant cells with photoactive analogs of colchicine. Biochem. Biophys. Res. Commun. 162: 1402–1408.

    CAS  Google Scholar 

  19. Hamada, H. and Tsuruo, T. 1988. Purification of the P-glycoprotein associated with multidrug resistance: P-glycoprotein is an ATPase. J. Biol. Chem. 263: 1454–1458.

    PubMed  CAS  Google Scholar 

  20. Chen, C.J., Chin, J.E., Ueda, K., Clark, D.P., Pastan, I., Gottesman, M.M., and Roninson, I.B. 1986. Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from human multidrug-resistant cells. Cell 47: 381–389.

    PubMed  CAS  Google Scholar 

  21. van der Bliek, A.M., Baas, F., Ten Houte de Lange, T., Kooiman, P.M., van der Velde-Koerts, T., and Borst, P. 1987. The human MDR3 gene encodes a novel P-glycoprotein homologue and gives rise to alternatively spliced mRNAs in liver. EMBO J. 6: 3325–3331.

    PubMed  Google Scholar 

  22. Gros, P., Croop, J., and Housman, D.E. 1986. Mammalian multidrug resistance gene: complete cDNA sequence indicates strong homology to bacterial transport proteins. Cell 47: 371–380.

    PubMed  CAS  Google Scholar 

  23. Gros, P., Raymond, M., Bell, J., and Housman, D.E. 1988. Cloning and characterization of a second member of the mouse mdr gene family. Mol. Cell. Biol. 8: 2770–2778.

    PubMed  CAS  Google Scholar 

  24. Devault, A. and Gros, P. 1990. Two members of the mouse mdr gene family confer multidrug resistance with overlapping but distinct drug specificities. Mol. Cell. Biol. 10: 1652–1663.

    PubMed  CAS  Google Scholar 

  25. Hsu, S.I.H., Cohen, D., Kirschner, L.S., Lothstein, L., Hartstein, M., and Horwitz, S.B. 1990. Structural analysis of the mouse mdr1a (P-glycoprotein) promoter reveals the basis for differential transcript heterogeneity in multidrug-resistant J774.2 cells. Mol. Cell. Biol. 10: 3596–3606.

    PubMed  CAS  Google Scholar 

  26. Raymond, M., Rose, E., Housman, D.E., and Gros, P. 1990. Physical mapping, amplification, and overexpression of the mouse mdr gene family in multidrug-resistant cells. Mol. Cell. Biol. 10: 1642–1651.

    PubMed  CAS  Google Scholar 

  27. Hsu, S.I.H., Lothstein, L., and Horwitz, S.B. 1989. Differential overexpression of three mdr gene family members in multidrug-resistant J774.2 mouse cells. J. Biol. Chem. 264: 12053–12062.

    PubMed  CAS  Google Scholar 

  28. Chin, J.E., Soffir, R., Noonan, K.E., Choi, K., and Roninson, I.B. 1989. Structure and expression of the human MDR (P-glycoprotein) gene family. Mol. Cell. Biol. 9: 3808–3820.

    PubMed  CAS  Google Scholar 

  29. Gros, P., Ben Neriah, Y., Croop, J.M., and Housman, D.E. 1986. Isolation and expression of complementary DNA that confers multidrug resistance. Nature 323: 728–731.

    PubMed  CAS  Google Scholar 

  30. Ueda, K., Cardarelli, C., Gottesman, M.M., and Pastan, I. 1987. Expression of a full-length cDNA clone from the human MDR1 gene confers resistance to colchicine, doxorubicin and vinblastine. Proc. Natl. Acad. Sci. USA 84: 3004–3008.

    PubMed  CAS  Google Scholar 

  31. Schinkel, A.H., Roelofs, M.E.M., and Borst, P. 1991. Characterization of the human MDR3 P-glycoprotein and its recognition by P-glycoprotein-specific monoclonal antibodies. Cancer Res. 51: 2628–2635.

    PubMed  CAS  Google Scholar 

  32. Croop, J.M., Raymond, M., Haber, D., Devault, A., Arceci, R., Gros, P., and Housman, D.E. 1989. The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues. Mol. Cell. Biol. 9: 1346–1350.

    PubMed  CAS  Google Scholar 

  33. Fojo, A., Ueda, K., Slamon, D.J., Poplack, D.G., Gottesman, M.M., and Pastan, I. 1987. Expression of a multidrug-resistance gene in human tumors and tissues. Proc. Natl. Acad. Sci. USA 84: 265–269.

    PubMed  CAS  Google Scholar 

  34. Arceci, R.J., Croop, J.M., Horwitz, S.B., and Housman, D.E. 1988. The gene encoding multidrug resistance is induced and expressed at high levels during pregnancy in the secretory epithelium of the uterus. Proc. Natl. Acad. Sci. USA 85: 4350–4354.

    PubMed  CAS  Google Scholar 

  35. Georges, E., Bradley, G., Gariepy, J., and Ling, V. 1990. Detection of P-glycoprotein isoforms by gene-specific monoclonal antibodies. Proc. Natl. Acad. Sci. USA 87: 152–156.

    PubMed  CAS  Google Scholar 

  36. Thiebaut, F., Tsuruo, T., Hamada, H., Gottesman, M.M., Pastan, I., and Willingham, M.C. 1987. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA 84: 7735–7738.

    PubMed  CAS  Google Scholar 

  37. Bradley, G., Georges, E., and Ling, V. 1990. Sex-dependent and independent expression of the P-glycoprotein isoforms in Chinese hamster. J. Cell. Physiol. 145: 398–408.

    PubMed  CAS  Google Scholar 

  38. Cordon-Cardo, C., O’Brien, J.P., Casals, D., Rittman-Grauer, L., Biedler, J.L., Melamed, M.R., and Bertino, J.R. 1989. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at the blood-brain barrier sites. Proc. Natl. Acad. Sci. USA 86: 695–698.

    PubMed  CAS  Google Scholar 

  39. Thiebaut, F., Tsuruo, T., Hamada, H., Gottesman, M.M., Pastan, I., and Willingham, M.C. 1989. Immunohistochemical localization in normal tissues of different epitopes in the multi-drug transport protein P170: Evidence for localization in brain capillaries and cross-reactivity of one antibody with a muscle protein. J. Histochem. Cytochem. 37: 159–164.

    PubMed  CAS  Google Scholar 

  40. Buschman, E., Arceci, R.J., Croop, J.M., Che, M., Arias, I.M., Housman, D.E., and Gros, P. 1992. mdrl encodes P-glycoprotein expressed in the bile canalicular membrane as determined by isoform-specific antibodies. J. Biol. Chem. 267: 18093–18099.

    PubMed  CAS  Google Scholar 

  41. Azzaria, M., Schurr, E., and Gros, P. 1989. Discrete mutations introduced in the predicted nucleotide-binding sites of the mdr1 gene abolish its ability to confer multidrug resistance. Mol. Cell. Biol. 9: 5289–5297.

    PubMed  CAS  Google Scholar 

  42. Choi, K., Chen, C.J., Kriegler, M., and Roninson, I.B. 1988. An altered pattern of cross-resistance in multidrug-resistant human cells results from spontaneous mutations in the mdr1 (P-glycoprotein) gene. Cell. 53: 519–529.

    PubMed  CAS  Google Scholar 

  43. Gros, P., Dhir, R., Croop, J., and Talbot, F. 1991. A single amino acid substitution strongly modulates the activity and substrate specificity of the mouse mdr1 and mdr3 drug efflux pumps. Proc. Natl. Acad. Sci. USA 88: 7289–7293.

    PubMed  CAS  Google Scholar 

  44. Devine, S.E., Ling, V., and Melera, P.W. 1992. Amino acid substitutions in the sixth transmembrane domain of P-glycoprotein alter multidrug resistance. Proc. Natl. Acad. Sci. USA 89: 4564–4568.

    PubMed  CAS  Google Scholar 

  45. Loo, T.W., and Clarke, D.M. 1993. Functional consequences of proline mutations in the predicted transmembrane domain of P-glycoprotein. J. Biol. Chem. 268: 3143–3149.

    PubMed  CAS  Google Scholar 

  46. Bruggemann, E.P., German, U.A., Gottesman, M.M., and Pastan, I. 1989. Two different regions of phosphoglycoprotein are photoaffinity labeled by azidopine. J. Biol. Chem. 264: 15483–15488.

    PubMed  Google Scholar 

  47. Yoshimura, A., Kuwazuru, Y., Sumizawa, T., Ichikawa, M., Ikeda, S.I., Ueda, T., and Akiyama, S.I. 1989. Cytoplasmic orientation and two-domain structure of the multidrug transporter, P-glycoprotein, demonstrated with sequence-specific antibodies. J. Biol. Chem. 264: 16282–16291.

    PubMed  CAS  Google Scholar 

  48. Greenberger, L.M., Lisanti, C., Silva, J.T., and Horwitz, S.B. 1991. Domain mapping of the photoaffinity drug-binding sites in P-glycoprotein encoded by mouse mdr1b. J. Biol. Chem. 266: 20744–20751.

    PubMed  CAS  Google Scholar 

  49. Bruggemann, E.P., Currier, S.J., Gottesman, M.M., and Pastan, I. 1992. Characterization of the azidopine and vinblastine binding site of P-glycoprotein. J. Biol. Chem. 267: 21020–21026.

    PubMed  CAS  Google Scholar 

  50. Higgins, CF., Hiles, I.D., Salmond, G.P.C., Gill, D.R., Downie, J.A., Evans, I.J., Holland, I.B., Gray, L., Buckel, S.D., Bell., A.W., and Hermodson, M.A. 1986. A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature 323: 448–450.

    PubMed  CAS  Google Scholar 

  51. Ames, G.F.L. 1986. Bacterial periplasmic transport systems: Structure, mechanism, and evolution. Annu. Rev. Biochem. 55: 397–425.

    PubMed  CAS  Google Scholar 

  52. Dudler, R., Schmidhauser, C., Parish, R.W., Wettenhall, R.E.H., and Schmidt, T. 1988. A mycoplasma high-affinity transport system and the in vitro invasiveness of mouse sarcoma cells. EMBO J. 7: 3963–3970.

    PubMed  CAS  Google Scholar 

  53. Felmlee, T., Pellett, S., and Welch, R.A. 1985. Nucleotide sequence of a chromosomal hemolysin. J. Bacteriol. 163: 94–105.

    PubMed  CAS  Google Scholar 

  54. Higgins, C.F., Haag, P.D., Nikaido, K., Ardeshir, F., Garcia, G., and Ames, G.F.L. 1982. Complete nucleotide sequence and identification of membrane components of the histidine transport operon of Salmonella typhimurium. Nature 298: 723–727.

    PubMed  CAS  Google Scholar 

  55. Higgins, C.F., Hyde, S.C., Mimmack, M.M., Gileadi, U., Gill, D.R., and Gallagher, M.P. 1990. Binding protein-dependent transport systems. J. Bioenerg. Biomembranes 22: 571–592.

    CAS  Google Scholar 

  56. Mackman, N., Nicaud, J.M., Gray, L., and Holland, I.B. 1986. Secretion of haemolysin by Escherichia coli. Curr. Top. Microbiol. Immunol. 125: 159–181.

    PubMed  CAS  Google Scholar 

  57. Wang, R., Seror, S.J., Blight, M., Pratt, J.M., Broome-Smith, J.K., and Holland, I.B. 1991. Analysis of the membrane organization of an Escherichia coli protein transporter, HlyB, a member of a large family of prokaryote and eukaryote surface transport proteins. J. Mol. Biol. 217: 441–454.

    PubMed  CAS  Google Scholar 

  58. Blight, M.A. and Holland, I.B. 1991. Structure and function of haemolysin B, P-glycoprotein and other members of a novel family of membrane translocators. Mol. Microbiol. 4: 873–880.

    Google Scholar 

  59. Koronakis, V., Koronakis, E., and Hughes, C. 1989. Isolation and analysis of the C-terminal signal directing export of Escherichia coli hemolysin protein across both bacterial membranes. EMBO J. 8: 595–605.

    PubMed  CAS  Google Scholar 

  60. Koronakis, V., Koronakis, E., and Hughes, C 1988. Comparison of the haemolysin secretion protein HlyB from Proteus vulgaris and Escherichia coli; site-directed mutagenesis causing impairment of export function. Mol. Gen. Genet. 213: 551–555.

    PubMed  CAS  Google Scholar 

  61. Scripture, J.B., Voelker, C., Miller, S., O’Donnell, R.T., Polgar, L., Rade, J., Hrazdovsky, B.F., and Hogg, R.W. 1987. High-affinity L-arabinose transport operon. Nucleotide sequence and analysis of gene products. J. Mol. Biol. 197: 37–46.

    PubMed  CAS  Google Scholar 

  62. Friedrich, M.J., Deveaux, L.C., and Kadner, R.J. 1986. Nucleotide sequence of the btuCED genes involved in vitamin B-12 transport in Escherichia coli and homology with components of periplasmic-binding-protein-dependent transport systems. J. Bacteriol. 167: 928–934.

    PubMed  CAS  Google Scholar 

  63. Johann, S., and Hinton, S.M. 1987. Cloning and nucleotide sequence of the chlD locus. J. Bacteriol. 169: 1911–1916.

    PubMed  CAS  Google Scholar 

  64. Staudenmaier, H., Van Hove, B., Yaraghi, Z., and Braun, V. 1989. Nucleotide sequences of the fecBCDE genes and locations of the proteins suggests a periplasmic binding protein dependent transport mechanism for iron (III) dicitrate in Escherichia coli. J. Bacteriol. 171: 2626–2633.

    PubMed  CAS  Google Scholar 

  65. Coulton, J.W., Mason, P., and Allatt, D.D. 1987. FhuC and FhuD genes for Iron (III)-ferrichrome transport into Escherichia coli K-12. J. Bacteriol. 169: 3844–3849.

    PubMed  CAS  Google Scholar 

  66. Nohno, T., Saito, T., and Hong, J.S. 1986. Cloning and complete nucleotide sequence of the Escherichia coli glutamine permease operon (glnHPQ). Mol. Gen. Genet. 205: 260–269.

    PubMed  CAS  Google Scholar 

  67. Gilson, E., Higgins, C.F., Hofnung, M., Ames, G.F.L., and Nikaido, H. 1982. Extensive homology between membrane associated components of histidine and maltose transport systems of Salmonella typhimurium and Escherichia coli. J. Biol. Chem. 257: 9915–9918.

    PubMed  CAS  Google Scholar 

  68. Surin, B.P., Rosenberg, H., and Cox, G.B. 1985. Phosphate-specific transport system of Escherichia coli: Nucleotide sequence and gene-polypeptide relationships. J. Bacteriol. 161: 189–198.

    PubMed  CAS  Google Scholar 

  69. Chen, C.M., Misra, T.K., Silver, S., and Rosen, B.P. 1986. Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J. Biol. Chem. 261: 15030–15038.

    PubMed  CAS  Google Scholar 

  70. Glaser, P., Sakamoto, H., Bellalou, J., Ullmann, A., and Danchin, A. 1988. Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclase-heamolysin bifunctional protein of Bordettella pertussis. EMBO J. 7: 3997–4004.

    PubMed  CAS  Google Scholar 

  71. Stanfield, S.W., Ielpi, L., O’Brochta, D., Helinski, D.R., and Ditta, G.S. 1988. The ndvA gene product of Rhizobium meliloti is required for ß-(lU2) glucan production and has homology to the ATP-binding export protein HlyB. J. Bacteriol. 170: 3523–3530.

    PubMed  CAS  Google Scholar 

  72. Cangelosi, G.A., Martinetti, G., Leigh, J.A., Lee, C.C, Theines, C., and Nester, E.W. 1989. Role of Agrobacterium tumefaciens ChvA protein in export of ß-l,2-glucan. J. Bacteriol. 171: 1609–1615.

    PubMed  CAS  Google Scholar 

  73. Doolittle, R.F., Johnson, M.S., Husain, I., Van Houten, B., Thomas, D.C., and Sancar, A. 1986. Domainal evolution of a prokaryotic DNA repair protein and relationship to active transport proteins. Nature 323: 451–453.

    PubMed  CAS  Google Scholar 

  74. O’Hare, K., Murphy, C., Levis, R., and Rubin, G.M. 1984. DNA sequence of the white locus of Drosophila melanogaster. J. Mol. Biol. 180: 437–455.

    PubMed  Google Scholar 

  75. Dreesen, T.D., Johnson, D.H., and Henikoff, S. 1988. The brown protein of Drosophila melanogaster is similar to the white protein and to components of active transport complexes. Mol. Cell. Biol. 8: 5206–5215.

    PubMed  CAS  Google Scholar 

  76. Samuelson, J., Ayala, P., Orozco, E., and Wirth, D. 1990. Emetine-resistant mutants of Entamoeba histolytica overexpress mRNAs for multidrug resistance. Mol. Biochem. Parasitol. 38: 281–290.

    PubMed  CAS  Google Scholar 

  77. Ohyama, K., Fukuzawa, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., Umesono, K., Shiki, Y., Takeuchi, M., Chang, Z., Aoto, S.I., Inokuchi, H., and Ozeki, H. 1986. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572–574.

    CAS  Google Scholar 

  78. Guifoile, P.G. and Hutchison, C.R. 1991. A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Proc. Natl. Acad. Sci. USA 88: 8553–8557.

    Google Scholar 

  79. Wu, C.T., Budding, M., Griffin, M.S., and Croop, J. 1991. Isolation and characterization of Drosophila multidrug resistance gene homologs. Mol. Cell. Biol. 11: 3940–3948.

    PubMed  CAS  Google Scholar 

  80. Anderegg, R.J., Betz, R., Carr, S.A., Crabb, J.W., and Duntze, W. 1988. Structure of Saccharomyces cerevisae mating hormone a-factor: Identification of S-farnesyl cysteine as a structural component. J. Biol. Chem. 263: 18236–18240.

    PubMed  CAS  Google Scholar 

  81. Kuchler, K., Sterne, R.E., and Thorner, J. 1989. Saccharomyces cerevisiae STE6 gene product: a novel pathway of protein export in eukaryotic cells. EMBO J. 8: 3973–3984.

    PubMed  CAS  Google Scholar 

  82. McGrath, J.P. and Varshavsky, A. 1989. The yeast STE6 gene encodes a homologue of the mammalian multidrug resistance P-glycoprotein. Nature 340: 400–404.

    PubMed  CAS  Google Scholar 

  83. Berkower, C. and Michaelis, S. 1991. Mutational analysis of the yeast a-factor transporter STE6, a member of the ATP binding cassette (ABC) protein superfamily. EMBO J. 10: 3777–3785.

    PubMed  CAS  Google Scholar 

  84. Raymond, M., Gros, P., Whiteway, M., and Thomas, D.Y. 1992. Functional complementation of yeast ste6 by a mammalian multidrug resistance mdr gene. Science 256: 232–234.

    PubMed  CAS  Google Scholar 

  85. Krogstad, D.J., Gluzman, I.Y., Kyle, D.E., Oduola, A.M.J., Martin, S.K., Milhous, W.K., and Schlesinger, P.H. 1987. Efflux of chloroquine from plasmodium falciparum: Mechanism of chloroquine resistance. Science 238: 1283–1285.

    PubMed  CAS  Google Scholar 

  86. Martin, S.K., Oduola, A.M.J., and Milhous, W.K. 1987. Reversal of chloroquine resistance in Plasmodium falciparum by verapamil. Science 235: 899–901.

    PubMed  CAS  Google Scholar 

  87. Bitonti, A.J., Sjoerdsma, A., McCann, P.P., Kyle, D.E., Oduola, A.M.J., Rossan, A.N., Milhous, W.K., and Davidson, D.E. 1988. Reversal of chloroquine resistance in malaria parasite P. falciparum by desipramine. Science 242: 1301–1303.

    PubMed  CAS  Google Scholar 

  88. Foote, S., Thompson, J.K., Cowman, A.F., and Kemp, D.J. 1989. Amplification of the multidrug resistance gene in some chloroquine-resistant isolates of P. falciparum. Cell 57: 921–930.

    PubMed  CAS  Google Scholar 

  89. Wilson, C.M., Serrano, A.E., Wasley, A., Bogenshutz, M.P., Shankar, A.H., and Wirth, D.F. 1989. Amplification of a gene related to mammalian mdr genes in drug-resistant Plasmodium falciparum. Science 244: 1184–1186.

    PubMed  CAS  Google Scholar 

  90. Foote, S.J., Kyle, D.E., Martin, R.K., Oduola, A.M.J., Forsyth, K., Kemp, DJ., and Cowman, A.F. 1990. Several alleles of the multidrug resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature 345: 255–258.

    PubMed  CAS  Google Scholar 

  91. Cowman, A.F., Karcz, S., Galatis, D., and Culvenor, J.G. 1991. A P-glycoprotein homologue is localized on the digestive vacuole. J. Cell. Biol. 113: 1033–1042.

    PubMed  CAS  Google Scholar 

  92. Karcz, S. and Cowman, A.F. 1991. Similarities and differences between the multidrug resistance phenotype of mammalian tumor cells and chloroquine resistance in Plasmodium falciparum. Exp. Parasitol. 73: 233–240.

    PubMed  CAS  Google Scholar 

  93. Ellenberger, T.E. and Beverley, 1989. Multiple drug resistance and conservative amplification of the H region in Leishmania major. J. Biol. Chem. 264: 15094–15103.

    PubMed  CAS  Google Scholar 

  94. Ouellette, M., Fase-Fowler, F., and Borst, P. 1990. The amplified H circle of methotrexate-resistant Leishmania tarentolae contains a novel P-glycoprotein gene. EMBO. J. 9: 1027–1033.

    PubMed  CAS  Google Scholar 

  95. Ouellette, M. and Borst, P. 1991. Drug resistance and P-glycoprotein gene amplification in the protozoan parasite Leishmania. Res. Immunol. 142: 737–746.

    CAS  Google Scholar 

  96. Henderson, D.M., Sifri, C.D., Rodgers, M., Wirth, D.F., Hendrickson, N., and Ullman, B. 1992. Multidrug resistance in Leishmania donovani is conferred by amplification of a gene homologous to the mammalian mdr1 gene. Mol. Cell. Biol. 12: 2855–2865.

    PubMed  CAS  Google Scholar 

  97. Lincke, C.R., The, I., van Groenigen, M., and Borst, P. 1992. The P-glycoprotein gene family of Caenorhabditis elegans. Cloning and characterization of genomic and complementary DNA sequences. J. Mol. Biol. 228: 701–711.

    PubMed  CAS  Google Scholar 

  98. Lincke, C.R., Broeks, A., The, I., Plasterk, H.A., and Borst, P. 1993. The expression of two P-glycoprotein (pgp) genes in transgenic Caenorhabditis elegans is confined to intestinal cells. EMBO J. 12: 1615–1620.

    PubMed  CAS  Google Scholar 

  99. Dudler, R. and Hertig, C. 1992. Structure of an mdr-like gene from Arabidopsis thaliana. J. Biol. Chem. 267: 5882–5888.

    PubMed  CAS  Google Scholar 

  100. Riordan, J.R., Rommens, J.M., Kerem, B.S., Alon, N., Rozmahel, R., Grzelczack, Z., Zielenski, J., Lok, S., Plavsic, N., Chou, J.L., Drumm, M.L., Iannuzzi, M.C., Collins, F.S., and Tsui, L.-C. 1989. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 245: 1066–1073.

    PubMed  CAS  Google Scholar 

  101. Monaco, J.J., Cho, S., and Attaya, M. 1990. Transport protein genes in the murine MHC: Possible implications for antigen processing. Science 250: 1723–1726.

    PubMed  CAS  Google Scholar 

  102. Deverson, E.V., Gow, I.R., Coadwell, J., Monaco, J.J., Butcher, G.W., and Howard, J.C. 1990. MHC class II region encoding proteins related to the multidrug resistance family of transmembrane transporters. Nature 348: 738–741.

    PubMed  CAS  Google Scholar 

  103. Trowsdale, J., Hanson, I., Mockridge, I., Beck, S., Townsend, A., and Kelly, A. 1990. Sequences encoded in the class II region of the MHC related to the ‘ABC’ superfamily of transporters. Nature 348: 741–743.

    PubMed  CAS  Google Scholar 

  104. Spies, T., Bresnahan, M., Bahrain, S., Arnold, D., Blanck, G., Mellins, E., Pious, D., and DeMars, R. 1990. A gene in the human major histocompatibility complex class II region controlling the class I antigen presentation pathway. Nature 348: 744–747.

    PubMed  CAS  Google Scholar 

  105. Cole, S.P.C., Bhardwaj, G., Gerlach, J.H., Mackie, J.E., Grant, C.E., Almquist, K.C., Stewart, A.J., Kurz, E.U., Duncan, A.M.W., and Deeley, R.G. 1992. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258: 1650–1654.

    PubMed  CAS  Google Scholar 

  106. Kamijo, K., Taketani, S., Yokota, S., Osumi, T., and Hashimoto, T. 1990. The 70-kDa peroxisomal membrane protein is a member of the Mdr (P-glycoprotein)-related ATP-binding protein superfamily. J. Biol. Chem. 265: 4534–4540.

    PubMed  CAS  Google Scholar 

  107. Mosser, J., Douar, A.-M., Sarde, C.-O., Kioschis, P., Feil, R., Moser, H., Poustka, A.-M., Mandel, J.-L., and Aubourg, P. 1993. Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 361: 726–730.

    PubMed  CAS  Google Scholar 

  108. Valle, D., and Gärtner, J. 1993. Penetrating the peroxisome. Nature 361: 682–683.

    PubMed  CAS  Google Scholar 

  109. Rommens, J.M., Iannuzzi, M.C., Kerem, B.S., Drumm, M.L., Melmer, G., Dean, M., Rozmahel, R., Cole, J.L., Kennedy, D., Hidaka, M., Zsiga, M., Buchwald, M., Riordan, J.R., Tsui, L.-C., and Collins, F.S. 1989. Identification of the cystic fibrosis gene: Chromosome walking and jumping. Science 245: 1059–1065.

    PubMed  CAS  Google Scholar 

  110. Rich, D.P., Anderson, M.P., Gregory, R.J., Cheng, S.H., Paul, S., Jefferson, D.M., McCann, J.D., Klinger, K.W., Smith, A.E., and Welch, M.J. 1990. Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells. Nature 347: 358–363.

    PubMed  CAS  Google Scholar 

  111. Drumm, M.L., Pope, H.A., Cliff, W.H., Rommens, J.M., Marvin, S.A., Tsui, L.-C, Collins, F.S., Frizzell, R.A., and Wilson, J.M. 1990. Correction of the cystic fibrosis defect in vitro by retrovirus-mediated gene transfer. Cell 62: 1227–1233.

    PubMed  CAS  Google Scholar 

  112. Anderson, M.P., Rich, D.R., Gregory, R.J., Smith, A.E., and Welsh, M.J. 1991. Generation of cAMP-activated chloride currents by expression of CFTR. Science 251: 679–682.

    PubMed  CAS  Google Scholar 

  113. Berger, H.B., Anderson, M.P., Gregory, R.J., Thompson, S., Howard, P.W., Maurer, R.A., Mulligan, R., Smith, A.E., and Welsh, M.J. 1991. Identification and regulation of the CFTR-generated chloride channel. J. Clin. Invest. 88: 1422–1431.

    PubMed  CAS  Google Scholar 

  114. Kartner, N., Hanrahan, J.W., Jensen, T.J., Naismith, A.L., Sun, S., Ackerley, CA., Reyes, E.F., Tsui, L.-C, Rommens, J.M., Bear, CE., and Riordan, J.R. 1991. Expression of the cystic fibrosis gene in non-epithelial invertebrate cells produces a regulated anion conductance. Cell 64: 681–691.

    PubMed  CAS  Google Scholar 

  115. Bear, C.E., Li, C., Kartner, N., Bridges, R.J., Jensen, T.J., Ramjeesingh, M., and Riordan, J.R. 1992. Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Science 245: 1073–1080.

    Google Scholar 

  116. Kerem, B.S., Rommens, J.M., Buchanan, J.A., Markiewicz, D., Cox, T.K., Chakravarti, A., Buchwald, M., and Tsui, L.-C. 1989. Identification of the cystic fibrosis gene: Genetic analysis. Science 245: 1073–1080.

    PubMed  CAS  Google Scholar 

  117. Tsui, L.-C. 1992. The spectrum of cystic fibrosis mutations. Trends Genet. 8: 392–398.

    PubMed  CAS  Google Scholar 

  118. Cheng, S.H., Gregory, R.J., Marshall, J., Paul, S., Souza, D.W., White, G.A., O’Riordan, C.R., and Smith, A.E. 1991. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell. 63: 827–834.

    Google Scholar 

  119. Denning, G.M., Ostedgaard, L.S., and Welsh, M.J. 1992. Abnormal localization of cystic fibrosis transmembrane conductance regulator in primary cultures of cystic fibrosis airway epithelia. J. Cell. Biol. 188: 551–559.

    Google Scholar 

  120. Denning, G.M., Anderson, M.P., Amara, J.F., Marshall, J., Smith, A.E., and Welsh, M.J. 1992. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358: 761–764.

    PubMed  CAS  Google Scholar 

  121. Cheng, S.H., Rich, D.P., Marshall, J., Gregory, R.J., Welsh, M.J., and Smith, A.E. 1991. Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66: 1027–1036.

    PubMed  CAS  Google Scholar 

  122. Chang, X.-B., Tabcharani, J.A., Hou, Y.-X., Jensen, T.J., Kartner, N., Alon, N., Hanrahan, J.W., and Riordan, J.R. 1993. Protein kinase A (PKA) still activates CFTR chloride channel after mutagenesis of all 10 PKA consensus phosphorylation sites. J. Biol. Chem. 268: 11304–11311.

    PubMed  CAS  Google Scholar 

  123. Rich, D.P., Gregory, R.J., Anderson, M.P., Manavalan, P., Smith, A.E., and Welsh, M.J. 1991. Effect of deleting the R domain on CFTR-generated chloride channels. Science 253: 205–207.

    PubMed  CAS  Google Scholar 

  124. Anderson, M.P., Berger, H.A., Rich, D.P., Gregory, R.J., Smith, A.E., and Welsh, M.J. 1991. Nucleoside triphosphates are required to open the CFTR chloride channel. Cell 67: 775–784.

    PubMed  CAS  Google Scholar 

  125. Teem, J.L., Berger, H.A., Ostedgaard, L.S., Rich, D.P., Tsui, L.-C, and Welsh, M.J. 1993. Identification of revertants of the cystic fibrosis ΔF508 mutation using STE6-CFTR chimeras in yeast. Cell 73: 335–346.

    PubMed  CAS  Google Scholar 

  126. Anderson, M.P., Gregory, R.J., Thompson, S., Souza, D.W., Paul, S., Mulligan, R.C., Smith, A.E., and Welsh, M.J. 1991. Demonstration that CFTR is a chloride channel by alternation of its anion selectivity. Science 253: 202–205.

    PubMed  CAS  Google Scholar 

  127. Sheppard, D.N., Rich, D.P., Ostedgaard, L.S., Gregory, R.J., Smith, A.E., and Welsh, M.J. 1993. Mutations in CFTR associated with mild-disease-form Cl-channels with altered pore properties. Nature 362: 160–164.

    PubMed  CAS  Google Scholar 

  128. Valverde, M.A., Diaz, M., Sepulveda, F.V., Gill, D.R., Hyde, S.C., and Higgins, CF. 1992. Volume-regulated chloride channel associated with the human multidrug-resistance P-glycoprotein. Nature 355: 830–833.

    PubMed  CAS  Google Scholar 

  129. Gill, D.R., Hyde, S.C., Higgins, CF., Valverde, M.A., Mintenig, G.M., and Sepúlveda, F.V. 1992. Separation of drug transport and chloride channel functions of the human multidrug resistance P-glycoprotein. Cell 71: 23–32.

    PubMed  CAS  Google Scholar 

  130. Trezise, A.E.O., Romano, P.R., Gill, D.R., Hyde, S.C., Sepúlveda, F.V., Buchwald, M., Higgins, C.F. 1992. The multidrug resistance and cystic fibrosis genes have complementary patterns of epithelial expression. EMBO J. 11: 4291–4303.

    PubMed  CAS  Google Scholar 

  131. Rotzschke, O. and Falk, K. 1991. Naturally-occuring peptide antigens derived from the MHC class-I-restricted processing pathway. Immunol.. Today 12: 447–453.

    CAS  Google Scholar 

  132. Parham, P. 1990. Transporters of delight. Nature 348: 674–675.

    PubMed  CAS  Google Scholar 

  133. Parham, P. 1991. Half of a peptide pump. Nature 351: 271–272.

    PubMed  CAS  Google Scholar 

  134. Townsend, A., Ohlen, C., Bastin, J., Ljunggren, H.-G., Foster, L., and Karre, K. 1989. Association of class I major histocompatibility heavy and light chains induced by viral peptides. Nature 340: 443–448.

    PubMed  CAS  Google Scholar 

  135. Cerundolo, V., Alexander, J., Anderson, K., Lamb, C., Cresswell, P., McMichael, A., and Townsend, A. 1990. Presentation of viral antigen controlled by a gene in the major histocompatibility complex. Nature 345: 449–452.

    PubMed  CAS  Google Scholar 

  136. Glynne, R., Powis, S.H., Beck, S., Kelly, A., Kerr, L.-A., and Trowsdale, J. 1991. A proteasome-related gene between the two ABC transporter loci in the class II region of the human MHC. Nature 353: 357–360.

    PubMed  CAS  Google Scholar 

  137. Powis, S.J., Townsend, A.R.M., Deverson, E.V., Bastin, J., Butcher, G.W., and Howard, J.C. 1991. Restoration of antigen presentation to the mutant cell line RMA-S by an MHC-linked transporter. Nature 354: 528–531.

    PubMed  CAS  Google Scholar 

  138. Spies, T. and DeMars, R. 1991. Restored expression of major histocompatibility class I molecules by gene transfer of a putative peptide transporter. Nature 351: 323–324.

    PubMed  CAS  Google Scholar 

  139. Kelly, A., Powis, S.H., Kerr, L.-A., Mockridge, I., Elliott, T., Bastin, J., Uchanska-Ziegler, B., Ziegler, A., Trowsdale, J., and Townsend, A. 1992. Assembly and function of the two ABC transporter proteins encoded in the human major histocompatibility complex. Nature 355: 641–644.

    PubMed  CAS  Google Scholar 

  140. Spies, T., Cerundolo, V., Colonna, M., Cresswell, P., Townsend, A., and DeMars, R. 1992. Presentation of viral antigen by MHC class I molecules is dependent on a putative peptide transporter heterodimer. Nature 355: 644–646.

    PubMed  CAS  Google Scholar 

  141. Ortiz-Navarrete, V., Seelig, A., Gernold, M., Frentzel, S., Kloetzel, P.M. and Hammerling, G.J. 1991. Subunit of the ‘20S’ proteasome (multicatalytic proteinase) encoded by the major histocompatibility complex. Nature 353: 662–664.

    PubMed  CAS  Google Scholar 

  142. Martinez, C.K. and Monaco, J.J. 1991. Homology of proteasome subunits to a major histocompatibility complex-related LMP gene. Nature 353: 664–667.

    PubMed  CAS  Google Scholar 

  143. Kelly, A., Powis, S.H., Glynne, R., Radley, E., Beck, S., and Trowsdale, J. 1991. Second proteasome-related gene in the human MHC class II region. Nature 353: 667–668.

    PubMed  CAS  Google Scholar 

  144. Brown, M.G., Driscoll, J., and Monaco, J.J. 1991. Structural and serological similarity of MHC-linked LMP and proteasome (multicatalytic proteinase) complexes. Nature 353: 355–357.

    PubMed  CAS  Google Scholar 

  145. Robertson, M. 1991. Proteasomes in the pathway. Nature 353: 300–301.

    PubMed  CAS  Google Scholar 

  146. Powis, S.J., Deverson, E.V., Coadwell, W.J., Ciruela, A., Huskisson, N.S., Smith, H., Butcher, G.W., and Howard, J.C. 1992. Effect of polymorphism of an MHC-linked transporter on the peptides assembled in a class I molecule. Nature 357: 211–215.

    PubMed  CAS  Google Scholar 

  147. Hyde, S.C., Emsley, P., Hartshorn, M.J., Mimmack, MM. Gileadi, U., Pearce, S.R., Gallagher, M.P., Gill, D.R., Hubbard, R.E., and Higgins, CF. 1990. Structural model for ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346: 362–366.

    PubMed  CAS  Google Scholar 

  148. Buschman, E. and Gros, P. 1991. Functional analysis of chimeric genes obtained by exchanging homologous domains of the mouse mdr1 and mdr2 genes. Mol. Cell. Biol. 11: 595–603.

    PubMed  CAS  Google Scholar 

  149. Cutting, G.R., Kash, L.M., Rosenstein, B.J., Zielenski, J., Tsui, L.-C, Antonarakis, S.E., and Kazazian, H.H. 1990. A cluster of cystic fibrosis mutations in the first nucleotide-binding fold of the cystic fibrosis conductance regulator protein. A cluster of cystic fibrosis mutations in the first nucleotide-binding fold of the cystic fibrosis conductance regulator protein. Nature 346: 366–369.

    PubMed  CAS  Google Scholar 

  150. Raviv, Y., Pollard, H.B., Bruggemann, E.P., Pastan, I., and Gottesman, M.M. 1990. Photosensitized labeling of a functional multidrug transporter in living drug-resistant tumor cells. J. Biol. Chem. 265: 3975–3980.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Buschman, E., Lepage, P., Gros, P. (1994). P-glycoprotein homologues. In: Goldstein, L.J., Ozols, R.F. (eds) Anticancer Drug Resistance. Cancer Treatment and Research, vol 73. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2632-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2632-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6129-9

  • Online ISBN: 978-1-4615-2632-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics