Skip to main content

Nucleoside and Nucleotide Modulation of Oncogenic Expression: A New Approach to Cancer Chemotherapy

  • Chapter
Anticancer Drug Discovery and Development: Natural Products and New Molecular Models

Part of the book series: Developments in Oncology ((DION,volume 74))

Abstract

The last 15 years have seen a virtual explosion in knowledge of cancer at the molecular level. Major efforts in the area of molecular genetics were stimulated by a study of viral oncogenes (1) and have centered around the activation of proto-oncogenes, which code for proteins that are involved in the signal transduction events that modulate normal cellular growth and differentiation. More that one hundred normal cellular proto-oncogenes are now known (2). Mechanisms of activation of proto-oncogenes to cellular oncogenes include point mutation, deletion, insertion, amplification, activation by internal rearrangement, chromosomal translocation, and promoter insertion (3). Cancer would appear to have many causes, but a common element is DNA damage resulting in aberrant gene expression which is a multi-step process (4). Chromosomal analyses of tumor cells have revealed many abnormal karyotypes with metastases as the most aberrant. Most cancers exhibit some cytogenetic defect (5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop JM: Viral Oncogenes. Cell 42:23–38, 1985.

    PubMed  CAS  Google Scholar 

  2. Stanbridge J, Nowell PC: Origins of human cancer revisited. Cell 63:867–874, 1990.

    PubMed  CAS  Google Scholar 

  3. Butturini A, Sthivelman E, Canaani E, Gale RP: Oncogenes in human leukemias. Cancer Invest. 6:305–316, 1988.

    PubMed  CAS  Google Scholar 

  4. Stoler AB: Genes and cancer. Brit. Med. Bull. 47:64–75, 1991.

    PubMed  CAS  Google Scholar 

  5. Seemayer TA, Cavenee WK: Molecular mechanisms of oncogenesis. Lab. Invest. 60:585–599, 1989.

    PubMed  CAS  Google Scholar 

  6. Bishop JM: Molecular themes in oncogenesis. Cell 64:235–248, 1991.

    PubMed  CAS  Google Scholar 

  7. Marshall CJ: Tumor suppressor genes. Cell 64:313–326, 1991.

    PubMed  CAS  Google Scholar 

  8. Hunter T: Cooperation between oncogenes. Cell 64:249–270, 1991.

    PubMed  CAS  Google Scholar 

  9. Gilman AG: G proteins: Transducers of receptor-generated signals. Ann. Rev. Biochem. 56:625–649, 1987.

    Google Scholar 

  10. Yip CC: Cell-membrane hormone receptors: Some perspectives on their structure and function relationship. Biochem. Cell Biol. 66:549–556, 1988.

    PubMed  CAS  Google Scholar 

  11. Stryer L, Bourne HR: G proteins: A family of signal transducers. Ann. Rev. Cell Biol. 2:391–419, 1986.

    PubMed  CAS  Google Scholar 

  12. Neer EJ, Clapham DA: Roles of G protein subunits in transmembrane signalling. Nature 333:129–134, 1988.

    PubMed  CAS  Google Scholar 

  13. Lochrie MA, Simon MI: G protein multiplicity in eukaryotic signal transduction systems. Biochemistry 27:4957–4965, 1988.

    PubMed  CAS  Google Scholar 

  14. Harnett MM, Klaus GGB: G protein regulation of receptor signalling. Immunol. Today 9:315–320, 1988.

    PubMed  CAS  Google Scholar 

  15. Ferguson JM, Higashijima T, Smigel MD, Gilman AG: Influence of bound GDP on the kinetics of guanine nucleotide binding to G proteins. J. Biol. Chem. 261:7393–7399, 1986.

    PubMed  CAS  Google Scholar 

  16. Weiss ER, Kelleher DJ, Woon CW, et al: Receptor activation of G proteins. FASEB J 2:2841–2848, 1988.

    PubMed  CAS  Google Scholar 

  17. Fain JN, Wallace MA, Wojcikiewicz RJW: Evidence for involvement of guanine nucleotide binding regulatory proteins in the activation of phospholipases by hormones. FASEB J 2:2569–2574, 1988.

    PubMed  CAS  Google Scholar 

  18. Berry N, Nishizuka Y: Protein kinase C and T cell activation. Euro. J. Biochem. 189:205–214, 1990.

    CAS  Google Scholar 

  19. Nishizuka Y: The role of protein kinase C in cell surface transduction and tumor promotion. Nature 308:693–698, 1984.

    PubMed  CAS  Google Scholar 

  20. Nishizuka Y: Studies and perspectives of protein kinase C. Science 233:305–312, 1986.

    PubMed  CAS  Google Scholar 

  21. Nishizuka Y: The molecular heterogenicity of protein kinase C and its implication for cellular regulation. Nature 334:661–665, 1988.

    PubMed  CAS  Google Scholar 

  22. Backer JM, Arcoleo J, Weinstein IB: Phosphorylation of proteins in the outer mitochondrial membrane by protein kinase C. Ann. N.Y. Acad. Sci. 494:77–79, 1987.

    Google Scholar 

  23. Nishiyama K, Sakai K, Tanaka Y, et al: Comparison of phosphorylation sites in protamines between protein kinase C and cAMP dependent protein kinase. Biochem. Int. 17:51–58, 1988.

    PubMed  CAS  Google Scholar 

  24. Backer JM, Weinstein IB: P21 ras proteins and guanine nucleotides modulate the phosphorylation of 3 6-and 17-kilodalton mitochondria-associated protein. Proc. Natl. Acad. Sci. USA 83:6357–6361,1986.

    PubMed  CAS  Google Scholar 

  25. Allende JE: GTP mediated marcomolecular interactions: The common features of different systems. FASEB J 2:2356–2367, 1988.

    PubMed  CAS  Google Scholar 

  26. Marshal CJ, Lloyd AC, Morris JDH, et al: A signal transduction by p21ras. Int. J. Cancer, Supplement 4:29–31, 1989.

    Google Scholar 

  27. Durkin JP, Chakravarthy B, Mealing G, et al: The role of signal transducing events in the proliferative response of cells to a mitogenic viral K-ras protein. Cellular Signalling 2:285–297, 1990.

    PubMed  CAS  Google Scholar 

  28. Cockcroft S, Bar-Sagi D: Effect of H-Ras proteins on the activity of polyphosphoinositide phospholipase C in HL60 membranes. Cellular Signalling 2:227–234, 1990.

    PubMed  CAS  Google Scholar 

  29. Chardin P: Small GTP-binding proteins of the ras family: A conserved functional mechanism. Cancer Cells 3:117–126, 1991.

    PubMed  CAS  Google Scholar 

  30. Durkin JP, Whitfield JF: Characterization of the mitogenic signal from an oncogene ras protein. Anticancer Res. 9:1313–1324, 1989.

    PubMed  CAS  Google Scholar 

  31. Kuzumaki N: Suppression of ras-transformants. Anticancer Res. 11:313–320, 1991.

    PubMed  CAS  Google Scholar 

  32. Hollywood D: Signal Transduction. British Med. Bull. 47:99–115, 1991.

    CAS  Google Scholar 

  33. McCormick F: The World According to GAP. Oncogene 5:1281–1283, 1990.

    PubMed  CAS  Google Scholar 

  34. Hsie AW, Puck TT: Morphological transformation of CHO cells by dibutyryl cAMP and testosterone. Proc. Natl. Acad. Sci. USA 68:358–361, 1971.

    PubMed  CAS  Google Scholar 

  35. Pastan I, Willingham M: Cellular transformation and the morphological phenotype of transformed cells. Nature 274:645–650, 1978.

    PubMed  CAS  Google Scholar 

  36. Ashall F, Sullivan N, Puck TT: Specificity of the cAMP-induced gene exposure reaction in CHO cells. Proc. Natl. Acad. Sci. USA 85:3908–3917, 1988.

    PubMed  CAS  Google Scholar 

  37. Muneyama K, Shuman DA, Boswell KH, et al: Synthesis and biological activity of 8-haloadenosine 3’-5’-cyclic phosphates. J. Carbohydr. Nucleosides Nucleotides 1:55–60, 1974.

    CAS  Google Scholar 

  38. Miller JP, Robins RK: The chemical modification of cyclic AMP and cyclic GMP. Ann. Reports in Med. Chem. 11:291, 1976.

    CAS  Google Scholar 

  39. Robins RK, Puck TT: Unpublished results.

    Google Scholar 

  40. Katsaros D, Tortora G, Tagliaferri P, et al: Site selective cAMP analogs provide a new approach in the control of cancer cell growth. FEBS Letters 223:97–103, 1987.

    PubMed  CAS  Google Scholar 

  41. Ally S, Tortora G, Clair T, et al: Selective modulation of protein kinase isoenzymes by the site-selective analog 8-chloro-cAMP provides biological means for control of human colon cancer cell growth. Proc. Natl. Acad. Sci. USA 85:6319–6322, 1988.

    PubMed  CAS  Google Scholar 

  42. Tortora G, Clair T, Katsaros D, et al: Induction of megakaryocytic differentiation and modulation of protein kinase gene expression by site-selective cAMP analogs in K-562 human leukemic cells. Proc. Natl. Acad. Sci. USA 86:2849–2852, 1989.

    PubMed  CAS  Google Scholar 

  43. Cho-Chung YS: Site-selective 8-chloro-cAMP as a biological modulator of cancer: Restoration of normal control mechanisms. J. Nat. Cancer Inst. 81:982–987, 1989.

    PubMed  CAS  Google Scholar 

  44. Cho-Chung YS, Clair T, Tagliaferri P, et al: Site selective cAMP analogs as new biological tools in growth control, differentiation and proto-oncogene regulation. Cancer Invest. 7:161–177, 1989.

    PubMed  CAS  Google Scholar 

  45. Parandoosh Z, Rubalcava B, Finch RA, et al: Changes in diacylglycerol and membrane associated protein kinase C activity reflect the growth status of xenografted human mammary carcinoma treated with 8-chloro-cAMP. Cancer Letters 49:195–200, 1990.

    PubMed  CAS  Google Scholar 

  46. Ally S, Clair T, Katsaros D, et al: Inhibition of growth and modulation of gene expression in human lung carcinoma in athymic mice by site-selective 8-chloro-cAMP. Cancer Res. 49:5650–5655, 1989.

    PubMed  CAS  Google Scholar 

  47. Tortora G, Ciardiello F, Ally S, et al: Site-selective 8-chloro-cAMP inhibits transformation and TGF production in Ki-ras transformed rat fibroblasts. FEBS Letters 242:363–367,1989.

    PubMed  CAS  Google Scholar 

  48. Ciardiello F, Tortora G, Kim N, et al: 8-chloro-cAMP inhibits transforming growth factor α transformation of mammary epithelial cells by restoration of the normal mRNA patterns for cAMP-dependent protein kinase regulatory subunit isoforms which show disruption upon transformation. J. Biol. Chem. 265:1016–1020, 1990.

    PubMed  CAS  Google Scholar 

  49. Takanashi A, Yasui W, Yoshida K, et al: Inhibitory effect of 8-chloro-cAMP on cell growth of gastric carcinoma cell lines. Jap. J. Cancer Res. 82:325–331, 1991.

    CAS  Google Scholar 

  50. Srivastava PC, Pickering MV, Allen LB, et al: Synthesis and antiviral activity of certain thiazole C-nucleosides. J. Med. Chem. 20:256, 1977.

    PubMed  CAS  Google Scholar 

  51. Robins RK, Srivastava PC, Narayana VL, et al: Ribofuranosylthiazole-4-carboxamide, a novel potential antitumor agent for lung tumors and metastases. J. Med. Chem. 25:107, 1982.

    PubMed  CAS  Google Scholar 

  52. Robins RK, Revankar GR: Purine analogs and related nucleosides and nucleotides as antitumor agents. Medicinal Res. Reviews 5:273–296, 1985.

    CAS  Google Scholar 

  53. Lui MS, Faderan MA, Liepnieks JJ, et al: Modulation of IMP dehydrogenase activity and guanylate metabolism by tiazofurin (2-ß-D-ribofuranosylthiazole-4-carboxamide). J. Biol. Chem. 259:5078, 1984.

    PubMed  CAS  Google Scholar 

  54. Srivastava PC, Robins RK: Synthetic and antitumor activity of 2-ß-D-ribofuranosylselenazole-4-carb-oxamide and related derivatives. J. Med. Chem. 26:445–448, 1983.

    PubMed  CAS  Google Scholar 

  55. Burchenal JH, Pancoast T, Carroll A, et al: Antileukemic, antitumor and cross-resistance studies of 2-ß-D-ribofuranosylselenazole-4-carboxamide (selenazofurin). Proc. Am. Assoc. Cancer Res. 25:Abst. #1375, 1984.

    Google Scholar 

  56. Streeter DG, Robins RK: Comparative in vitro studies of tiazofurin and a selenazole analog. Biochem. Biophys. Res. Commun. 115:544–550, 1983.

    PubMed  CAS  Google Scholar 

  57. Avery TL, Hennen WJ, Revankar GR, Robins RK: New carbon-carbon linked nucleosides with potent anti-tumor activity. In: New Avenues in Developmental Cancer Chemotherapy, Chapter 18, Academic Press, pp 367–385, 1987.

    Google Scholar 

  58. Jayaram HN, Dion RL, Glazer RI, et al: Initial studies on the mechanism of action of a new oncolytic thiazole nucleoside, 2-ß-D-ribofuranosyl thiazole-4-carboxamide (NSC 286193). Biochem. Pharmacol. 31:2371, 1982.

    PubMed  CAS  Google Scholar 

  59. Fridland A, Connelly MC, Robbins, T: Evidence for phosphorylation of adenosine kinase and 5’-nucleotidase. Cancer Res. 46:527–532, 1986.

    Google Scholar 

  60. Kuttan R, Robins RK, Saunders PP: Inhibition of inosinate dehydrogenase by metabolites of 2-ß-D-ribofuranosylthiazole-4-carboxamide. Biochem. Biophys. Res. Commun. 107:862–868, 1982.

    PubMed  CAS  Google Scholar 

  61. Cooney DA, Jayaram HN, Gebeyehu G, et al: The conversion of 2-ß-D-ribofuranosylthiazole-4-carb-oxamide to an analogue of NAD with potent IMP dehy-drogenase-inhibitory properties. Biochem. Pharmacol. 31:2133, 1982.

    PubMed  CAS  Google Scholar 

  62. Lucas DL, Robins RK, Knight RD, Wright DG: Induced maturation of the human promyelocytic leukemia cell line HL-60 by 2-ß-D-ribofuranosylselenazole-4-ca-rboxamide. Biochem. Biophys. Res. Commun. 115:971, 1983.

    PubMed  CAS  Google Scholar 

  63. Robins RK: Nucleosides and nucleotide inhibitors of inosine monophosphate dehydrogenase as potential antitumor agents. Nucleosides Nucleotides 1:35–44, 1982.

    CAS  Google Scholar 

  64. Weber G: Biochemical strategy of cancer cells and the design of chemotherapy: G.H.A. Clowes Memorial Lecture. Cancer Res. 43:3466–3492, 1983.

    PubMed  CAS  Google Scholar 

  65. Ngueyen BT, Cohen MB, Sadee W: Guanine ribonucleotide depletion in mammalian cells -a target of purine antimetabolites. Cancer Chemother. Pharmacol. 11:117–119, 1983.

    Google Scholar 

  66. Cohen MB, Sadee W: Contributions of the depletions of guanine and adenine nucleotides to the toxicity of purine starvation in the mouse T lymphoma cell line. Cancer Res. 43:1587–1591, 1983.

    PubMed  CAS  Google Scholar 

  67. Earle MF, Glazer RI: Activity and metabolism of 2-ß-D-ribofuranosylthiazole-4-carboxamide in human lymphoid tumor cells in culture. Cancer Res. 43:-133–137, 1983.

    PubMed  CAS  Google Scholar 

  68. Ahluwalia GS, Jayaram HN, Plowman JP, et al: Studies on the mechanism of action of 2-ß-D-ribofuranosylthiazole-4-carboxamide. V. Factors governing the response of murine tumors to tiazofurin. Biochem. Pharmacol. 33:1195, 1984.

    PubMed  CAS  Google Scholar 

  69. Liepnieke JJ, Foderan MA, Lui MS, Weber G: Tiazofurin-induced selective depression of NAD content in hepatoma 3824A. Biochem. Biophys. Res. Commun. 122:345–349, 1984.

    Google Scholar 

  70. Wright DG: A role for guanine ribonucleotides in regulation of myeloid cell maturation. Blood 67: 334–337, 1987.

    Google Scholar 

  71. Parandoosh Z, Robins RK, Belei M, Rubalcava B: Tiazofurin and selenazofurin induce depression of cGMP and phosphatidylinositol pathway in L1210 leukemia cells. Biochem. Biophys. Res. Commun. 164:869–874, 1989.

    PubMed  CAS  Google Scholar 

  72. Olah E, Natsumeda Y, Ikegami T, et al: Induction of erythroid differentiation and modulation of gene expression by tiazofurin in K-562 leukemia cells. Proc. Natl. Acad. Sci. USA 85:6533–6537, 1988.

    PubMed  CAS  Google Scholar 

  73. Olah E, Ezer R, Giaretti W, Eble J: Metabolic control of genetic expression. Biochemical Society Trans. 18:72, 1990.

    CAS  Google Scholar 

  74. Olah E, Kote Z, Natsumeda Y, et al: Down-regulation of c-myc and c-Ha-ras gene expression by tiazofurin in rat hepatoma cells. Cancer Biochem. Biophys. 11:107–117, 1990.

    PubMed  CAS  Google Scholar 

  75. Kharbanda SM, Sherman ML, Spriggs DR, Kufe DW: Effects of tiazofurin on protooncogene expression during HL-60 cell differentiation. Cancer Res. 48:5965–5968, 1988.

    PubMed  CAS  Google Scholar 

  76. Kharbanda SM, Sherman ML, Kufe DW: Effects of tiazofurin on guanosine nucleotide binding regulatory proteins in HL-60 cells. Blood 75:583–588, 1990.

    PubMed  CAS  Google Scholar 

  77. Weber G: Critical issues in chemotherapy with tiazofurin. Adv. in Enzyme Regulation 29:75–95, 1989.

    CAS  Google Scholar 

  78. Weber G, Nagai M, Natsumeda Y, et al: Tiazofurin down-regulates expression of c-Ki-ras oncogene in a leukemic patient. Cancer Communications 3:61–66, 1991.

    PubMed  CAS  Google Scholar 

  79. Tricot GM, Jayram HN, Nichols CR, et al: Hematological and biochemical action of tiazofurin in a case of refractory acute myeloid leukemia. Cancer Res. 47:4988–4991, 1987.

    PubMed  CAS  Google Scholar 

  80. Tricot GJ, Jayram HN, Lapis E, et al: Biochemically directed therapy of leukemia with tiazofurin, a selective blocker of IMP dehydrogenase activity. Cancer Res. 49:3696–3701, 1989.

    PubMed  CAS  Google Scholar 

  81. Tricot G, Jayram HN, Weber G, Hoffman R: Tiazofurin:Biological and clinical uses. Int. J. of Cell Cloning 8:161–170, 1990.

    CAS  Google Scholar 

  82. Weber G, Nagai M, Natsumeda Y, et al: Down-regulation in c-Ki-ras and c-myc expression in tiazofurin-treated leukemic patients. Proc. Am. Assn. Cancer Res. 32:Abst. #1717, 1991.

    Google Scholar 

  83. Micha JP, Kuceram PR, Preve CU, et al: Action of 2-ß-D-ribofuronosyl-4-carboxamide (tiazofurin) against untreated human ovarian cancers in the murine xenograft assay. Gynecol. Oncology 21:351–355, 1985.

    CAS  Google Scholar 

  84. Porter AG: The prospects for therapy with tumor necrosis factors and their antagonists. Trends in Biotechnology 9:158–162, 1991.

    PubMed  CAS  Google Scholar 

  85. Robins RK, Ojo-Amaize E, Parandoosh Z, et al: Adv. in Ensyme Regulation 29:97–121, 1989.

    CAS  Google Scholar 

  86. Nagahara K, Anderson JD, Kini GD, et al: Thiazolo-[4,5-d]pyrimidine nucleosides. The synthesis of certain 3-ß-D-ribofuranosylthiazolo[4,5-d]pyrimidines as potential immunotherapeutic agents. J. Med. Chem. 33:407–415, 1990.

    PubMed  CAS  Google Scholar 

  87. Smee DF, Alaghamandan HA, Cottam HB, et al: Broad-spectrum in vivo antiviral activity of 7-thia-8-oxoguanosine, a novel immunopotentiating agent. Antimicrob. Agents and Chemotherapy 33:1487–1492, 1989.

    CAS  Google Scholar 

  88. Smee DF, Alaghamandan HA, Cottam HB, et al: Antiviral activity of the novel immunomodulator, 7-thia-8-oxoguanosine. J. Biol. Response Modifiers 9:24–32, 1990.

    CAS  Google Scholar 

  89. Smee DF, Alghamandan HA, Bartlett ML, Robins RK: Intranasal treatment of picornavirus and coronavirus respiratory infections in rodents using 7-thia-8-oxoguanosine. Antiviral Chem. Chemother. 1:47–52, 1990.

    CAS  Google Scholar 

  90. Ojo-Amaize EA, Rubalcava B, Avery TL, et al: Activation of the respiratory burst in murine phagocytes by certain guanine ribonucleosides modified at the 7 and 8-positions: Possible involvement of a pertussis toxin-sensitive G-protein. Immunol. Lett. 23:173–178, 1990.

    PubMed  CAS  Google Scholar 

  91. Parandoosh Z, Ojo-Amaize E, Robins RK, et al: Stimulation of phosphoinositide signalling pathway in murine B lymphocytes by a novel guanosine analog, 7-thia-8-oxoquanosine. Biochem. Biophys. Res. Comnun. 163:1306–1311, 1989.

    CAS  Google Scholar 

  92. Sharma BS, Jin A, Balazs L, et al: Inhibition of metastatic growth of murine B16 melanoma tumor cells in mice by 7-thia-8-oxoguanosine. Proc. Am. Assn. Cancer Res. 30:Abst. #1433, 1989.

    Google Scholar 

  93. Finch RA, Vasquez KM, Cottam HB, et al: 7-Thia-8-oxoguanosine modification of host responses to experimental neoplasms. Proc. Am. Assn. Cancer Res. 31:Abst. #1659, 1990.

    Google Scholar 

  94. Revankar GR, Hanna NB, Imamura N, et al: Synthesis and in vivo antitumor activity of 2-amino-9-purine-6-sulfenamide, -sulfinamide and -sulfonamide and related purine ribonucleosides. J. Med. Chem. 33:121–128, 1990.

    PubMed  CAS  Google Scholar 

  95. Avery TL, Finch RA, Vasquez KM, et al: Chemotherapeutic characterization in mice of 2-amino-9-ß-D-ribofuranosylpurine-6-sulfonamide (sulfinosine), a novel purine nucleoside with unique antitumor properties. Cancer Res. 50:2625–2630, 1990.

    PubMed  CAS  Google Scholar 

  96. Ojo-Amaize E, Jolley WB, Robins RK: Unpublished results.

    Google Scholar 

  97. Fidler IJ: Cancer Metastasis. Brit. Med. Bulletin 47:157–177, 1991.

    CAS  Google Scholar 

  98. Whitworth PW, Pak CC, Esgro J, et al: Macrophages and cancer. Cancer Metastasis and Reviews 8:319–351, 1990.

    CAS  Google Scholar 

  99. Fidler IJ: Eradication of cancer metastasis by tumorcidal macrophages. Adv. in Exper. Med. Biol. 233:415–423, 1988.

    CAS  Google Scholar 

  100. Kronke M, Schutze S, Scheurich P, et al: Tumor necrosis factor signal transduction. Cellular Signalling 2:1–8, 1990.

    PubMed  CAS  Google Scholar 

  101. Imamura K, Sherman ML, Spriggs D, Kufe D: J. Biol. Chem. 263:10247–10253, 1988.

    PubMed  CAS  Google Scholar 

  102. Earl CQ, Stadel JM, Anzano MA: Tumor necrosis factor-mediated biological activities involve a G-protein dependent mechanism. J. Biol. Resp. Modifiers 9:361–367, 1990.

    CAS  Google Scholar 

  103. Schabel FM, Jr, Griswold DP, Jr, Corbett TH, et al: Curative chemotherapy of advanced 239Pu-induced osteosarcoma in mice with 2-ß-D-ribofuranosylthiazole-4-carboxamide and of advanced leukemia L1210 with tiazofurin plus BCNU. Proc. Am. Assn. Cancer Res. 24:Abst. #1047, 1983.

    Google Scholar 

  104. Harrison SD, Jr, O’Dwyer PJ, Trader MW: Therapeutic synergism of tiazofurin and selected antitumor drugs against sensitive and resistant P388 leukemia in mice. Cancer Res. 46:3396–3400, 1986.

    PubMed  CAS  Google Scholar 

  105. Jacobsen SJ, Page T, Diala ES, et al: Synergistic activity of purine metabolism inhibitors in cultured human tumor cells. Cancer Lett. 35:97–104, 1987.

    PubMed  CAS  Google Scholar 

  106. Saunders PP, Tan MT, Spindler CD, Robins RK: Use of tiazofurin to enhance the metabolism and cytotoxic activities of analogs of guanine, guanosine and deoxyguanosine. Cancer Res. 47:102 2–102 6, 1987.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robins, R.K., Finch, R.A., Avery, T.L. (1994). Nucleoside and Nucleotide Modulation of Oncogenic Expression: A New Approach to Cancer Chemotherapy. In: Valeriote, F.A., Corbett, T.H., Baker, L.H. (eds) Anticancer Drug Discovery and Development: Natural Products and New Molecular Models. Developments in Oncology, vol 74. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2610-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2610-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6118-3

  • Online ISBN: 978-1-4615-2610-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics