Skip to main content

Abstract

Drug discovery has been an essential pursuit of mankind since prehistoric times. Because of the structural and biological diversity of their constituents, terrestrial plants offer a unique, renewable resource for the discovery of potential new drugs and biological entities. The most pertinent question is how to find the proverbial needle (active compound) in the haystack (plant kingdom). Conservative estimates indicate that there are about 250,000 species of flowering plants on this planet, of which it is estimated that 155,000 are found in the tropics (1), consequently, a rational strategy for drug discovery is required, since it is unrealistic to believe that all plants can be investigated biologically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prance GT: Floristic inventory of the tropics: Where do we stand? Ann. Missouri Bot. Garden 64: 659–684, 1977.

    Article  Google Scholar 

  2. Neuss N and Neuss MN: The therapeutic use of bisindole alkaloids from Catharanthus. Alkaloids NY 37: 229–240, 1990.

    CAS  Google Scholar 

  3. Wiernik PH, Schwartz EL, Strauman JJ, et al: Phase I clinical and pharmacokinetic study of taxol-I. Cancer Res. 47: 2486–2493, 1987.

    PubMed  CAS  Google Scholar 

  4. Li YH, Guo SF, Zhou FY, et al: Combined harringtonine or homoharringtonine chemotherapy for acute nonlymphocytic leukemia in 2 5 children. Chung-Hua I Hsueh Tsa Chih (English ed.) 96:303–305, 1983.

    CAS  Google Scholar 

  5. Ajani JA, Dimery I, Chawaia PJ, et al: Phase II studies of homoharringtonine in patients with advanced malignant melanoma, sarcoma, and head and neck, breast and colorectal carcinomas. Cancer Res. 70:375–379, 1986.

    CAS  Google Scholar 

  6. Legha SS, Keating M, Picket S, et al: Phase I clinical investigation of homoharringtonine. Cancer Treat. Repts. 68:1085–1091, 1984.

    CAS  Google Scholar 

  7. Neidart IA, Young DC, Kraut E, et al: Phase I trial of homoharringtonine administered by prolonged continuous infusion. Cancer Res. 46:967–969, 1986.

    Google Scholar 

  8. Hsu B, Yang JL: Hydroxycamptothecin as an antitumor agent. In: Advances in Chinese Medicinal Materials Research, HM Chang, HW Yeung, WW Tso, A Koo (eds), World Scientific Press, Philadelphia, pp. 377–389, 1984.

    Google Scholar 

  9. Muss HB, Bundy BN, Yazigi R, Yordan E: Teniposide in squamous cell carcinoma of the cervix: A phase II trial of the Gynecological Oncology Group. Cancer Treat. Repts. 71: 873–874, 1987.

    CAS  Google Scholar 

  10. Han J: Traditional Chinese Medicine and the search for new antineoplastic drugs. J. Ethnopharmacol. 24:1–17, 1988.

    Article  PubMed  CAS  Google Scholar 

  11. Caille P, Mondesir JM, Droz JP, et al: Phase II trial of Ellipticinium in advanced renal cell carcinoma. Cancer Treat. Repts. 69:901–902, 1985.

    CAS  Google Scholar 

  12. Einzig AI, Gralla RJ, Leyland-Jones BR, et al: Phase I study of Ellipticinium (2-N-methyl-9-hydroxyellipticinium). Cancer Invest. 3: 235–241, 1985.

    Article  PubMed  CAS  Google Scholar 

  13. Rouesse JG, Le Chevalier T, Caille P, et al: Phase II study of Ellipticinium in advanced breast cancer. Cancer Treat. Rep. 69: 707–708, 1985.

    PubMed  CAS  Google Scholar 

  14. McGuire WP, Rowinsky EK, Rosenchein NB, et al:Taxol: A unique antineoplastic agent with significant activity in advanced epithelial neoplasms. Ann. Intern. Med. 111:273–279, 1989.

    PubMed  CAS  Google Scholar 

  15. Barclay AS, Perdue RE, Jr.: Distribution of anticancer activity in higher plants. Cancer Treat. Repts. 60:1081–1113, 1976.

    CAS  Google Scholar 

  16. Cordell GA: Recent experimental and clinical data concerning antitumor and cytotoxic agents from plants. In: New Natural Products and Plant Drugs with Pharmacological, Biological or Therapeutical Activity, H Wagner, P Wolff (eds), Springer Verlag, Berlin, West Germany, pp. 55–82, 1977.

    Google Scholar 

  17. Suffness M: The discovery and development of antitumor drugs from natural products. In: Advances in Medicinal Plant Research, AJ Vlietink, RA Dommisse (eds), Wissenschaftliche Verlags gmbH, Stuttgart, pp. 101–133, 1985.

    Google Scholar 

  18. Cordell GA, Farnsworth NR: Experimental antitumor agents from plants. 1974–1976. Lloydia 40:1–44, 1977.

    PubMed  CAS  Google Scholar 

  19. Suffness M, Douros J: Drugs of plant origin. In: Methods in Cancer Research, Vol. 16, Part A, VT DeVita, H Busch (eds), Academic Press, New York, pp. 73–126, 1979.

    Google Scholar 

  20. Wall ME, Wani MC, Cook CE, Palmer KH: Plant antitumor agents. I: the isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J. Am. Chem. Soc. 88:3888–3890, 1966.

    Article  CAS  Google Scholar 

  21. Wani MC, Taylor HL, Wall ME, et al: Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93:2325–2327, 1971.

    Article  PubMed  CAS  Google Scholar 

  22. Loub WD, Farnsworth NR, Soejarto DD, Quinn ML: NAPRALERT: Computer handling of natural product research data. J. Chem. Info. Comp. Sci. 25:99–103, 1985.

    Article  CAS  Google Scholar 

  23. Farnsworth NR, Loub WD, Soejarto DD, et al: Computer services for research on plants for fertility regulation. Kor. J. Pharmacog. 12:98–109, 1981.

    Google Scholar 

  24. Griffin PD: Plants for Fertility Regulation. In: Research in Human Reproduction Biennial Report of the WHO Special Program of Research, Development and Research Training in Human Reproduction, E Diczfalusy, PD Griffin, J Khanna (eds), World Health Organization, Geneva, pp. 229–242, 1988.

    Google Scholar 

  25. Hendrix MJC, Seftor EA, Seftor REB, Fidler IJ: A simple quantitative assay for studying the invasive potential of high and low human metastatic variants. Cancer Letts. 38:137–147, 1987.

    Article  CAS  Google Scholar 

  26. Liotta LA: Tumor invasion and metastases — Role of the extracellular matrix. Cancer Res. 46:1–7, 1986.

    Article  PubMed  CAS  Google Scholar 

  27. Folkman J: How is blood vessel growth regulated in normal and neoplastic tissue? Cancer Res. 46: 467–473, 1986.

    PubMed  CAS  Google Scholar 

  28. Crum R, Szabo S, Folkman J: A new class of steroids inhibit angiogenesis in the presence of heparin or a heparin fragment. Science 2 30:1375–1378, 1985.

    Article  PubMed  CAS  Google Scholar 

  29. Folkman J: Tumor angiogenesis. Adv. Cancer Res. 43:175–230, 1985.

    Article  PubMed  CAS  Google Scholar 

  30. Suffness M, Pezzuto JM: Assays for cytotoxicity and antitumor activity. In: Methods in Plant Biochemistry, Vol. 6, K Hostettmann (ed), Academic Press, London, pp. 71–133, 1991.

    Google Scholar 

  31. Suffness M, Douros J: Current status of the NCI plant and animal product program. J. Nat. Prod. 45:1–14, 1982.

    Article  PubMed  CAS  Google Scholar 

  32. Swanson SM, Jiang J-X, de Souza NJ, Pezzuto JM: A rapid and sensitive bioassay involving cultured rat glioma cells to screen for substances capable of elevating intracellular cyclic AMP concentration. J. Nat. Prod. 51:929–936, 1988.

    Article  PubMed  CAS  Google Scholar 

  33. Bellamy WT, Dalton WS, Kailey JM, et al: Verapamil reversal of doxorubicin resistance in multidrug-resistant human myeloma cells and association with drug accumulation and DNA damage. Cancer Res. 48:6303–6308, 1988.

    Google Scholar 

  34. Akiyama S-I, Cornwell MM, Kuwano M, et al: Most drugs that reverse multidrug resistance also inhibit photo-affinity labeling of P-glycoprotein by a vinblastine analog. Mol. Pharmacol. 33:144–147, 1988.

    PubMed  CAS  Google Scholar 

  35. Suffness M: New approaches to the discovery of antitumor agents. In: Biologically Active Natural Products, K Hostettmann, PJ Lea (eds), Clarendon Press, Oxford, pp. 85–104, 1987.

    Google Scholar 

  36. Alley MC, Scudiero DA, Monks A, et al: Feasibility of drug screening with panels of tumor human cell lines using a microculture tetrazolium assay. Cancer Res. 48: 589–601, 1988.

    PubMed  CAS  Google Scholar 

  37. Shoemaker RH, Monks A, Alley MC, et al: Development of human tumor cell line panels for use in disease-oriented drug screening programs. In: Prediction of Response to Cancer Therapy, TC Hall (ed), Alan R. Liss, Inc., New York, pp. 265–286, 1988.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cordell, G.A. et al. (1994). Novel Strategies for the Discovery of Plant-Derived Anticancer Agents. In: Valeriote, F.A., Corbett, T.H., Baker, L.H. (eds) Anticancer Drug Discovery and Development: Natural Products and New Molecular Models. Developments in Oncology, vol 74. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2610-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2610-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6118-3

  • Online ISBN: 978-1-4615-2610-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics