Skip to main content

Hormone ‘resistance’ in breast cancer: The role of normal and mutant steroid receptors

  • Chapter
Mammary Tumorigenesis and Malignant Progression

Part of the book series: Cancer Treatment and Research ((CTAR,volume 71))

  • 65 Accesses

Abstract

Faithful expression of genetic information is lost in tumor cells due to the formation of spontaneous cell variants. In breast cancer, this evolution is marked by progression of tumors from hormone-dependent, through hormone-responsive, to hormone-resistant states. Many resistant tumors no longer express estrogen receptors (ERs) and progesterone receptors (PRs), and this may be the basis for their hormone resistance. However, half of all advanced breast cancers are receptor positive, yet they too fail to respond to antiestrogen therapy. Both the cellular heterogeneity that mark progression of the disease and the hormone resistance that characterize the end stages of the disease have been longstanding clinical problems that are slowly yielding to basic research focused both on solid tumors taken directly from patients and on breast cancer cell lines derived from such tumors. This chapter discusses how mutant ERs serve as one mechanism for development of resistance. A suggestion is made that subpopulations of tumor cells can be stimulated, rather than inhibited, by antiestrogens like tamoxifen. Our recent work with normal PRs, showing conditions in which progesterone antagonists, too, can have inappropriate, agonist-like effects, is also described. These PR models represent additional mechanisms that may explain the hormone-resistant state. It is suggested that many ‘resistant’ tumors are not simply ignoring the hormone antagonist treatment; instead, in these tumors, the hormone antagonist has become stimulatory rather than inhibitory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Green S, Walter P, Kumar V, et al. 1986. Human oestrogen receptor cDNA: Sequence, expression and homology to v-erb-A. Nature 320: 134–139.

    Article  PubMed  CAS  Google Scholar 

  2. Greene GL, Gilna P, Waterfield M, Baker A, Hort Y, Shine J. 1986. Sequence and expression of human estrogen receptor complementary DNA. Science 231: 1150–1154.

    Article  PubMed  CAS  Google Scholar 

  3. Ponglikitmongkol M, Green S, Chambon P. 1988. Genomic organization of the human oestrogen receptor gene. EMBO J 7: 3385–3388.

    PubMed  CAS  Google Scholar 

  4. Kumar V, Green S, Staub A, Chambon P. 1986. Localisation of the oestradiol-binding and putative DNA-binding domains of the human oestrogen receptor. EMBO J 5: 2231–2236.

    PubMed  CAS  Google Scholar 

  5. Kumar V, Chambon P. 1988. The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell 55: 145–156.

    Article  PubMed  CAS  Google Scholar 

  6. Guiochon-Mantel A, Loosfelt H, Ragot T, et al. 1988. Receptors bound to antiprogestins form abortive complexes with hormone responsive elements. Nature 336: 695–698.

    Article  PubMed  CAS  Google Scholar 

  7. Baulieu E-E. 1987. Steroid hormone antagonists at the receptor level: A role for the heat-shock protein MW 90,000 (hsp 90). J Cell Biochem 35: 161–174.

    Article  PubMed  CAS  Google Scholar 

  8. Fawell SE, Lees JA, White R, Parker MG. 1990. Characterization and colocalization of steroid binding and dimerization activities in the mouse estrogen receptor. Cell 60: 953–962.

    Article  PubMed  CAS  Google Scholar 

  9. Adler S, Waterman ML, He X, Rosenfeld MG. 1988. Steroid-receptor mediated inhibition of rat prolactin gene expression does not require the receptor DNA-binding domain. Cell 52: 685–695.

    Article  PubMed  CAS  Google Scholar 

  10. Washburn T, Hocutt A, Brautigan DL, Korach KA. 1991. Uterine estrogen receptor in vivo: Phosphorylation of nuclear-specific forms on serine residues. Mol Endocrinol 5: 235–242.

    Article  PubMed  CAS  Google Scholar 

  11. Murphy LC. 1990. Estrogen receptor variants in human breast cancer. Mol Cell Endocrinol 74: C83–C86.

    Article  PubMed  CAS  Google Scholar 

  12. Hill SM, Fuqua SAW, Chamness GC, Greene GL, McGuire WL. 1989. Estrogen receptor expression in human breast cancer associated with an estrogen receptor gene restriction fragment length polymorphism. Cancer Res 49: 145–148.

    PubMed  CAS  Google Scholar 

  13. Castagnoli A, Maestri I, Bernardi F, Del Senno L. 1987. PvuII RFLP inside the human estrogen receptor gene. Nucleic Acids Res 15: 866.

    Article  PubMed  CAS  Google Scholar 

  14. Parl FF, Cavener DR, Dupont WD. 1989. Genomic DNA analysis of the estrogen receptor gene in breast cancer. Br Cancer Res Treat 14: 57–64.

    Article  CAS  Google Scholar 

  15. Keaveney M, Klug J, Dawson MT, et al. 1991. Evidence for a previously unidentified upstream exon in the human oestrogen receptor gene. J Mol Endocrinol 6: 111–115.

    Article  PubMed  CAS  Google Scholar 

  16. Shupnik MA, Gordon MS, Chin WW. 1989. Tissue-specific regulation of rat estrogen receptor mRNAs. Mol Endocrinol 3: 660–665.

    Article  PubMed  CAS  Google Scholar 

  17. Garcia T, Lehrer S, Bloomer W, Schachter B. 1988. A variant estrogen receptor messenger ribonucleic acid is associated with reduced levels of estrogen binding in human mammary tumors. Mol Endocrinol 2: 785–791.

    Article  PubMed  CAS  Google Scholar 

  18. Garcia T, Sanchez M, Cox JL, et al. 1989. Identification of a variant form of the human estrogen receptor with an amino acid replacement. Nucleic Acids Res 17: 8364.

    Article  PubMed  CAS  Google Scholar 

  19. Lehrer S, Sanchez M, Song HK, et al. 1990. Oestrogen receptor B-region polymorphism and spontaneous abortion in women with breast cancer. Lancet 335: 622–624.

    Article  PubMed  CAS  Google Scholar 

  20. Dotzlaw H, Alkhalaf M, Murphy LC. 1992. Characterization of estrogen receptor variant mRNAs from human breast cancers. Mol Endocrinol 6: 773–785.

    Article  PubMed  CAS  Google Scholar 

  21. Fuqua SAW, Fitzgerald SD, Chamness GC, et al. 1991. Variant human breast tumor estrogen receptor with constitutive transcriptional activity. Cancer Res 51: 105–109.

    PubMed  CAS  Google Scholar 

  22. Hirose T, Koga M, Matsumoto K, Sato B. 1991. A single nucleotide substitution in the D domain of estrogen receptor cDNA causes amino acid alteration from Glu-279 to Lys-279 in a murine transformed Leydig cell line (B-l F). J Steroid Biochem Mol Biol 39: 1–4.

    Article  PubMed  CAS  Google Scholar 

  23. Foster BD, Cavener DR, Parl FF. 1991. Binding analysis of the estrogen receptor to its specific DNA target site in human breast cancer. Cancer Res 51: 3405–3410.

    PubMed  CAS  Google Scholar 

  24. Scott GK, Kushner P, Vigne J-L, Benz CC. 1991. Truncated forms of DNA-binding estrogen receptors in breast cancer. J Clin Invest 88: 700–706.

    Article  PubMed  CAS  Google Scholar 

  25. Horwitz KB, McGuire WL, Pearson OH, Segaloff A. 1975. Predicting response to endocrine therapy in human breast cancer: A hypothesis. Science 189: 726–727.

    Article  PubMed  CAS  Google Scholar 

  26. Horwitz KB, McGuire WL. 1978. Estrogen control of progesterone receptor in human breast cancer: Correlation with nuclear processing of estrogen receptor. J Biol Chem 253: 2223–2228.

    PubMed  CAS  Google Scholar 

  27. Horwitz KB, Zava DT, Thiligar AK, Jensen EM, McGuire WL. 1978. Steroid receptor analyses of nine human breast cancer cell lines. Cancer Res 38: 2434–2437.

    PubMed  CAS  Google Scholar 

  28. Keydar I, Chen L, Karbey S, et al. 1979. Establishment and characterization of a cell line of human breast carcinoma origin. Eur J Cancer 15: 659–670.

    PubMed  CAS  Google Scholar 

  29. Horwitz KB. 1981. Is a functional estrogen receptor always required for progesterone receptor induction in breast cancer? J Steroid Biochem 15: 209–217.

    Article  PubMed  CAS  Google Scholar 

  30. Horwitz KB, Mockus MB, Lessey BA. 1982. Variant T47D human breast cancer cells with high progesterone receptor levels despite estrogen and antiestrogen resistance. Cell 28: 633–642.

    Article  PubMed  CAS  Google Scholar 

  31. Graham II ML, Krett NL, Miller LA, Leslie KK, Gordon DF, Wood WM, Wei LL, Horwitz KB. 1990. T47DCO cells, genetically unstable and containing estrogen receptor mutations, are a model for the progression of breast cancers to hormone resistance. Cancer Res 50: 6208–6217.

    PubMed  CAS  Google Scholar 

  32. Graham II ML, Dalquist KE, Horwitz KB. 1989. Simultaneous measurement of progesterone receptors and DNA indices by flow cytometry: Analyses of breast cancer cell mixtures and genetic instability of the T47D line. Cancer Res 49: 3943–3949.

    PubMed  CAS  Google Scholar 

  33. Forman BM, Yang C, Au M, Casanova J, Ghysdael J, Samuels HH. 1989. A domain containing leucine zipper-like motifs mediate novel in vivo interactions between the thyroid hormone and retinoic acid receptors. Mol Endocrinol 3: 1610–1626.

    Article  PubMed  CAS  Google Scholar 

  34. Graham II ML, Bunn PA Jr, Jewett PB, Gonzalez-Aller C, Horwitz KB. 1989. Simultaneous measurement of progesterone receptors and DNA indices by flow cytometry: Characterization of an assay in breast cancer cell lines. Cancer Res 49: 3934–3942.

    PubMed  CAS  Google Scholar 

  35. Graham II ML, Smith JA, Jewett PB, Horwitz KB. 1992. Heterogeneity of progesterone receptor content and remodeling by tamoxifen characterize subpopulations of cultured human breast cancer cells: Analysis by quantitative dual parameter flow cytometry. Cancer Res 52: 593–602.

    PubMed  CAS  Google Scholar 

  36. Lerner LJ, Jordan VC. 1990. Development of antiestrogens and their use in breast cancer. Cancer Res 50: 4177–4189.

    PubMed  CAS  Google Scholar 

  37. Osborne CK, Coronado EB, Robinson JR. 1987. Human breast cancer in the athymic nude mouse. Cytostatic effects of long-term antiestrogen therapy. Eur J Cancer Clin Oncol 23: 1189–1196.

    Article  PubMed  CAS  Google Scholar 

  38. Lippman ME. 1984. An assessment of current achievements in the systemic management of breast cancer. Br Cancer Res Treat 4: 69–77.

    Article  CAS  Google Scholar 

  39. McGuire WL, Lippman ME, Osborne CK, Thompson EB. 1987. Resistance to endocrine therapy. Br Cancer Res Treat 9: 165–173.

    Article  CAS  Google Scholar 

  40. Gottardis MM, Jiang S-Y, Jeng M-H, Jordan VC. 1989. Inhibition of tamoxifen stimulated growth of an MCF-7 tumor variant in athymic mice by novel steroidal antiestrogens. Cancer Res 49: 4090–4093.

    PubMed  CAS  Google Scholar 

  41. Osborne CK, Coronado EB, Wiebe V, DeGregorio M. In press. Acquired tamoxifen resistance correlates with reduced breast tumor levels of tamoxifen and isomerization of trans-4-hydroxytamoxifen. J Natl Cancer Inst.

    Google Scholar 

  42. Katzenellenbogen BS, Rendra KL, Normal MJ, Berthois Y. 1987. Proliferation, hormonal responsiveness, and estrogen receptor content of MCF-7 human breast cancer cells grown in the short-term and long-term absence of estrogens. Cancer Res 47: 4355–4360.

    PubMed  CAS  Google Scholar 

  43. Daly RJ, King RJB, Darbre PD. 1990. Interaction of growth factors during progression towards steroid independence in T47D human breast cancer cells. J Cell Biochem 43: 199–211.

    Article  PubMed  CAS  Google Scholar 

  44. Gottardis MM, Jordan VC. 1988. Development of tamoxifen-stimulated growth of MCF-7 tumors in athymic mouse after long-term tamoxifen administration. Cancer Res 48: 5183–5188.

    PubMed  CAS  Google Scholar 

  45. Turner RT, Wakely GK, Hannum KS, Bell NH. 1987. Tamoxifen prevents the skeletal effects of ovarian deficiency in rats. J Bone Miner Res 2: 449–456.

    Article  PubMed  CAS  Google Scholar 

  46. Henderson IC, Harris JR, Kinne DW, Hellman S. 1989. Cancer of the breast. In DeVita VT Jr, Hellman S, Rosenberg SA (eds), Cancer: Principles and Practice of Oncology. J.B. Lippincott: Philadelphia, p 1252.

    Google Scholar 

  47. Legault-Poisson S, Jolivet J, Poisson R, Beretta-Riccoli M, Band PR. 1979. Tamoxifen-induced tumor stimulation and withdrawal response. Cancer Treat Rep 63: 1839–1841.

    PubMed  CAS  Google Scholar 

  48. Horwitz KB, Aiginger P, Kuttenn F, McGuire WL. 1981. Nuclear estrogen receptor release from antiestrogen suppression: Amplified induction of progesterone receptor in MCF-7 human breast cancer cells. Endocrinology 108: 1703–1709.

    Article  PubMed  CAS  Google Scholar 

  49. Murphy LC, Dotzlaw H, Johnson Wong MS, Miller T, Murphy LJ. 1991. Mechanisms involved in the evolution of progestin resistance in human breast cancer cells. Cancer Res 51: 2051.

    PubMed  CAS  Google Scholar 

  50. Jeltsch JM, Krozowski Z, Quirin-Stricker C, Gronemeyer H, Simpson RJ, Garnier JM, Krust A, Jacob F, Chambon P. 1986. Cloning of the chicken progesterone receptor. Proc Natl Acad Sci USA 83: 5424.

    Article  PubMed  CAS  Google Scholar 

  51. Conneely OM, Sullivan WP, Toft DO, Birnbaumer M, Cook RG, Maxwell BL, Zarucki-Schulz T, Green GL, Schrader WT, O’Malley BW. 1986. Molecular cloning of the chicken progesterone receptor. Science 233: 767.

    Article  PubMed  CAS  Google Scholar 

  52. Misrahi M, Atger M, d’Auriol L, Loosfelt H, Meriel C, Fridlansky F, Guiochon-Mantel A, Galibert F, Milgrom E. 1987. Complete amino acid sequence of the human progesterone receptor deduced from cloned cDNA. Biochem Biophys Res Commun 143: 740.

    Article  PubMed  CAS  Google Scholar 

  53. Horwitz KB. 1992. The molecular biology of RU486. Is there a role for antiprogestins in the treatment of breast cancer? Endocrine Rev 13: 146–163.

    CAS  Google Scholar 

  54. Tora L, Gronemeyer H, Turcotte B, Gaub M-P, Chambon P. 1988. The N-terminal region of the chicken progesterone receptor specifies target gene activation. Nature 333: 185.

    Article  PubMed  CAS  Google Scholar 

  55. Vegeto E, Allan GF, Schrader WT, et al. 1992. The mechanisms of RU486 antagonism is dependent on the conformation of the carboxy-terminal tail of the human progesterone receptor. Cell 69: 703.

    Article  PubMed  CAS  Google Scholar 

  56. Sartorius CA, Tung L, Takimoto GS, Horwitz KB. 1993. Antagonist-occupied human progesterone receptors bound to DNA are functionally switched to transcriptional agonists by cAMP. J Biol Chem 268: 9262–9266.

    PubMed  CAS  Google Scholar 

  57. Tung L, Mohamed MK, Hoeffler JP, Takimoto GS, Horwitz KB. 1993. Antagonist-occupied human progesterone B-receptors activate transcription without binding to progesterone response elements, and are dominantly inhibited by A-receptors. Mol Endocrinol 7: 1256.

    Article  PubMed  CAS  Google Scholar 

  58. Mayer ME, Pronon A, Ji J, et al. 1990. Agonistic and antagonist activities of RU486 on the functions of the human progesterone receptor. EMBO J 9: 3923.

    Google Scholar 

  59. Kiang DT. 1991. Chemoprevention for breast cancer: Are we ready? J Natl Cancer Inst 83: 462–463.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Horwitz, K.B. (1994). Hormone ‘resistance’ in breast cancer: The role of normal and mutant steroid receptors. In: Dickson, R.B., Lippman, M.E. (eds) Mammary Tumorigenesis and Malignant Progression. Cancer Treatment and Research, vol 71. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2592-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2592-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6109-1

  • Online ISBN: 978-1-4615-2592-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics