Skip to main content

Normal Hypoxanthine and Ammonia Release from Working Muscle in Partial HPRT Deficiency

  • Chapter
Purine and Pyrimidine Metabolism in Man VIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 370))

  • 17 Accesses

Abstract

Partial deficiency of HPRT (EC 2.4.2.8.) is one of the enzyme defects causing hyperuricemia and gout. The most obvious explanation for this phenomenon is the reduced activity of the salvage pathway with increased degradation of hypoxanthine and xanthine into uric acid. Since the salvage reactions consume PRPP, HPRT deficiency results in an accumulation of PRPP which further activates the purine nucleotide synthesis de novo and ultimately increases uric acid formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Hisatome I, H. Kitamura H, M. Saito et al, Excess release of hypoxanthine from exercising muscle in two gout patients with partial HGPRTase deficiency: Lack of ammonium release. Am. J. Med. 90: 533–535 (1991).

    PubMed  CAS  Google Scholar 

  2. J.M. Lowenstein JM, Ammonia production in muscle and other tissues: the purine nucleotide cycle. Physiol Review 52: 382–414 (1972).

    CAS  Google Scholar 

  3. M.N. Goodman, J.M. Lowenstein, The purine nucleotide cycle. Studies of ammonia production by skeletal muscle in situ and in perfused preparations. J. Biol. Chem. 252: 5054–5060 (1977).

    PubMed  CAS  Google Scholar 

  4. R.A. Harkness, R.J. Simmonds, S.B. Coade, Purine transport and metabolism in man: the effect of exercise on concentrations of purine bases, nucleosides and nucleotides in plasma, urine, leucocytes and erythrocytes. Clin. Sci. 64: 333–340 (1983).

    PubMed  CAS  Google Scholar 

  5. V. Schultz, J.M. Lowenstein, Purine nucleotide cycle. Evidence for the occurrence of the cycle in brain. J. Biol. Chem. 251: 485–492 (1976).

    PubMed  CAS  Google Scholar 

  6. G. Schopf, M. Havel, R. Fasol, M.M. Müller, Enzyme activities of purine catabolism and salvage in human muscle tissue. Adv. Exp. Med. Biol. 195B: 507–509 (1986).

    Article  CAS  Google Scholar 

  7. Jacobs AEM, Oosterhof A, Veerkamp JH. Purine and pyrimidine metabolism in human muscle and cultured muscle cells. Biochim. Biophys. Acta 970: 130–136 (1988).

    Article  PubMed  CAS  Google Scholar 

  8. V.H. Patterson, K.K. Kaiser, M.H. Brooke MH, Exercising muscle does not produce hypoxanthine in adenylate deaminase deficiency. Neurology 33: 784–786 (1983).

    Article  PubMed  CAS  Google Scholar 

  9. W.N. Fishbein, Human myoadenylate deaminase deficiency. Adv. Exp. Med. Biol 165A: 77–84 (1984).

    Article  Google Scholar 

  10. J.G. Puig, M.L. Jiménez, F.A. Mateos, I.H. Fox, Adenine nucleotide turnover in hypoxanthine-guanine phosphoribosyl-transferase deficiency: evidence for an increased contribution of purine biosynthesis de novo. Metabolism 38: 410–418 (1989).

    Article  PubMed  CAS  Google Scholar 

  11. J.G. Puig, F.A. Mateos, M.L. Jiménez, T.H. Ramos, Renal excretion of hypoxanthine and xanthine in primary gout. Am. J: Med. 85: 533–537 (1988).

    Article  CAS  Google Scholar 

  12. C. Lartigue-Mattei, J.L. Chabard, J.M. Ristori et al, Kinetics of allopurinol and its metabolite oxy-purinol after oral administration of allopurinol alone or associated with benzbromarone in man. Simultaneous assay of hypoxanthine and xanthine by gas chromatography-mass spectrometry. Fundam. Clin. Pharmacol. 5: 621–633 (1991).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gross, M., Gathof, B.S., Gresser, U. (1995). Normal Hypoxanthine and Ammonia Release from Working Muscle in Partial HPRT Deficiency. In: Sahota, A., Taylor, M.W. (eds) Purine and Pyrimidine Metabolism in Man VIII. Advances in Experimental Medicine and Biology, vol 370. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2584-4_74

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2584-4_74

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6105-3

  • Online ISBN: 978-1-4615-2584-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics